
TRS-BO®
Madel I

Double-Density
Disk System Owners Manual

..
. . .

~ .·

1tad1e lhaeK
The biggest name in little computers®

CUSTOM MANUFACTURED IN THE USA BY RADIO SHACK, A DIVISION OF TANDY CORPORATION

A Note On Double-Density BACKUP ...

The TRS-80® Model I Double-Density System diskette supplied with this
package will not BACKUP in Drive O when the diskette has a write-protect
tab.

We suggest you keep a write-protect tab on your original Double
Density TRSDOS diskette until you are ready to duplicate it. Then remove
the write-protect tab and follow the instructions on Page 3 of the Owner's
Manual to make a safe copy.

When you have finished backing it up, replace the write-protect tab to
label it as the "master" diskette.

Thank You

llad1e lbaeK
8759175

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick conve
nient, and reliable repair services for all of its computer products, 1n most
instances. Warranty service will be performed in accordance with Radio
Shack's Limited Warranty. Non-warranty service will be provided at reasonable
parts and labor costs.

Because of the sensitivity of computer equipment. and the problems which can
result from improper servicing. the following limitations also apply to the
services offered by Radio Shack.

1. If any of the warranty seals on any Radio Shack computer products are
broken, Radio Shack reserves the right to refuse to service the equipment or
to void any remaining warranty on the equipment

2. If any Radio Shack computer equipment has been modified so that 1t is not
within manufacturer's specifications, including. but not limited to. the in
stallation of any non-Radio Shack parts. components or replacement
boards. then Radio Shack reserves the right to refuse to service the equip
ment, void any remaining warranty, remove and replace any non-Radio
Shack part found in the equipment. and perform whatever modifications are
necessary to return the equipment to original factory manufacturer's speci
fications.

3. The cost for the labor and parts required to return the Radio Shack com
puter equipment to original manufacturer's specifications will be charged to
the customer in addition to the normal repair charge.

®

TRS-BO
Model I

Double-Density
Disk
System
Owner's
Manual

llad10 lhaeli
A DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

TRS-80" Model I Disk System Owner's Manual:
© 1982 Tandy Corporation, Fort Worth, Texas
76102 U.S.A. All Rights Reserved.

Reproduction or use, without express written per
mission from Tandy Corporation or any portion of
this manual is prohibited. While reasonable
efforts have been taken in the preparation of this
manual to assure its accuracy, Tandy Corporation
assumes no liability resulting from any errors or
omissions in this manual or from the use of the
information obtained herein.

Model I TRSDOS '" Operating System:
© 1982 Tandy Corporation, Fort Worth, Texas
76102 U.S.A. All Rights Reserved.

Model I BASIC Software: © 1982 Tandy Cor
poration and Microsoft. All Rights Reserved.

The system software in the Model I microcom
puter is retained in a read-only memory (ROM)
format. All portions of this system software.
whether in the ROM format or other source code
form format, and the ROM circuitry are copy
righted and are the proprietary and trade secret
information of Tandy Corporation and Microsoft.
Use, reproductions, or publication of any portion
of this material without the prior written authori
zation by Tandy Corporation is strictly prohibited.

10 9 8 7 6 5 4 3 2

DOUBLE-DENSITY

To Our Customers
Congratulations on your purchase of a Model I Double-Density Disk System.
Your Single-Density Disk System has been enhanced with additional commands
and the capability of storing more data on a 5¼" diskette.

Application programs and associated data in both Assembly Language and
BASIC can be copied by the user from a Single-Density Model I diskette to
Double-Density. Most of these programs can then be run taking advantage of the
Double-Density increased storage capability. However, Radio Shack
applications software is not available or supported for double-density operation.

The Model I Disk Operating System has been updated to be comparable to the
TRSDOS in Model III including most of the Library (and BASIC) commands.
There are several additional Library commands such as TRACE, UNKILL and
VERIFY. DIRectory will list a file from either Double-Density or Single-Density in
the Model III format. COPY allows you to copy from Single-Density to Double
Density or vice versa. BACKUP and FORMAT only function in Double-Density.

Shugart Disk Drives will not support 40 track operation. Disk drives with a
serial number followed by a (-1) are ~anufactured by Tandon or Texas
Peripherals and are certified for double-density and can be CONFIGured to
40 tracks.

In addition to the new operating system, there is a hardware change that must be
made to your computer. This Double-Density Adapter must be installed by a
qualified Radio Shack technician. With this hardware modification, you can
operate your Model I computer with your present Single-Density operating
system or with the new Double-Density operating system which is supplied with
this package.

Your system can continue to grow in power and convenience. When Radio
Shack issues improvements and enhancements to the system programs, you can
"install" them simply by obtaining a new release of the TRsoos diskette.

ii

DOUBLE-DENSITY

Introduction
The Double-Density Disk System allows increased storage on a 5 ¼" diskette
because the data is stored closer together (more dense). An 80% increase in disk
storage capability is available using 35 tracks and more than double the capacity
if 40 tracks are used.

Because the disk structure is different, Double-Density TRSDOS will only support
the following library commands on single-density diskettes; DIR (directory) and
COPY.

There are many new commands in Double-Density TRSDOS/BASIC that allow
your TRS-80 Model I to perform almost like a Model III and utilize enhancements
that were not previously available. Information stored as single-density may
easily be converted to double-density using FORMAT and COPY. However,
Double-Density TRSDOS will not read a diskette which is in Model III format.

On power-up, single-density TRsoos will be used. If a double-density operating
system diskette is in Drive 0, a dual disk controller is activated and subsequent
operations are in double-density. If a single-density operating system is in Drive
0, the system will remain in single-density and you can use all the features of
the resident operating system.

A hardware modification is necessary to allow use of double-density TRSDOS.

With the installation of a Double-Density Adapter, you have the option of using
a single- or double-density operating system. In other words, after modification,
your disk system can still be used as a single-density system.

Important Notice

The Double-Density adapter must be installed by a qualified Radio Shack
Service Technician. Unauthorized installation will void the warranty.

Model I Manuals
Publications related to the use of the Model I Double-Density Disk System:

1. Model I Double-Density Disk System Owner's Manual (this manual). We'll
call it the "Double-Density Manual" for short.

2. Model I Double-Density Disk System Quick Reference Card.

3. Model I Disk System Owner's Manual, the "Disk Manual" for short.

4. Level II BASIC Reference Manual, the "Model I Manual" for short.

iii

L-8 l .
' ,• -:_,, ,_.

-···'"

TRS-80 MODEL I DISK SYSTEM

For Disk Operation:

This Double-Density Disk Manual supplements the Level II BASIC Reference
Manual and the Model I Disk System Owner's Manual. Use the prior manuals
as the primary source of information.

For Programming Information:

The Level II Manual contains most of the programming information, except that
which pertains to disk inpuUoutput. In this manual, we will assume that you are
familiar with the BASIC programming definitions and details given in the Model I
manuals.

About This Manual
The Model I Double-Density Disk System is intended for use by novices as well
as experienced computer operators and programmers. In designing and writing
this Double-Density Disk Manual, we've tried to define and satisfy the needs of
both groups:

• Novices who might prefer a sequential presentation which emphasizes
procedures and explains the purpose of various features.

• Experienced users who might prefer a more analytical presentation which
makes it easy to find specific information.

In this manual, you'll find information that should satisfy your needs, whichever
group you might belong to.

The TRSDOS and BASIC commands used with Double-Density are similar to
Model I commands. The sections that include these commands have been
included in their entirety in this manual to avoid confusion.

iv

DOUBLE-DENSITY

Contents
1 I Getting Started with the Double-Density System

Start-Up Sequence .. .

TRSD0S Start-Up Dialog

Making a BACKUP of TRSD0S

Making a Data Diskette (I'0RMAT)

Cassette Baud Rate under Disk BASIC

1

1

2

2

3

6

Troubleshooting and Maintenance . 7

Notation and Abbreviations . 9

Specifications . 11

2 I Description of TRSD0S

What is TRSDOS? . 13

Where does BASIC Fit In? . 13

How TRSD0S Uses RAM 14

Entering a TRSD0S Command . 17

System, Program and Data Files . 17

Repeat Key . 18

3 / TRsoos Commands .. 19

4 I Technical Information . 77

Memory Organization . 77

Disk Organization . 77

File Structure . 77

Units of Allocation . 78

Methods of File Allocation . 78

Physical and Logical Records in TRSD0S . 79

System Routines for Assembly-Language 1/0 80

Fundamental TRSD0S 110 Calls . 82

5 I Disk BASIC

Start-up 111

Initialization .. 111

BASIC* 112

V

TRS-80 MODEL I DISK SYSTEM

Enhancements to Model I BASIC Commands 115

6 / Disk Related Features

Sequential Access .. 171

Random Access: Techniques 175

Random Access: A General Procedure 179

Appendix A/Disk BASIC Error Codes/Messages 181

Appendix B/Model I BASIC Reserved Words 183

Index .. . 185

vi

OPERATION
OPERATION
OPERATION
OPERATION
OPERATION
OPERATION
OPERATION
OP RATION
OPERATION
OPERATION
OPER TION
OP 4 TJON

· n
I
I

OPE KATI ON
OPERATI -N
OPERATION
OPERATION

1/ Getting Started with the
Double-Density System

Start-Up Sequence

DOUBLE-DENSITY

When turning power to the Computer on or off, all drives should be empty.
Leaving the diskettes in the drives may cause information previously stored to
be changed or even destroyed.

Do not turn a peripheral on or off during a disk read/write operation (when the
drive LED is illuminated). Work done on a currently open file may be lost. Also
note that turning the peripherals on and off while the Computer is on may
confuse the system and cause abnormal operation.

The power switch for each Mini Disk is on the rear of the unit. Power is "on''
when the toggle switch is in the up position, and "off' when the switch is
down.

The Start-Up sequence is as follows:

I. Turn all peripherals (printer, disk drives, etc.) ON.

2. Turn the Expansion Interface ON.

3. Tum the CPU /keyboard ON Wait until all disk drive motors have stopped,
then carefully insert your double-density TRSDOS diskette into Drive 0. You

Figure 1. Inserting a Diskette.

TRS-80 MODEL I DISK SYSTEM

may also want to insert formatted diskettes in the other drives. Note: It is
normal for random ''garbage'' to be displayed on the video at this time.

4. Press the RESET button (located at the left rear side of the cru/keyboard).

5. LOADING TRsoos should now be displayed on the Video, if not repeat Steps
#3 &4.

TRSDOS should now load its start-up dialog. If it does not load, check the
following items:

• Is the diskette you are using a TRsoos '"system" diskette?

• Is the diskette properly inserted into Drive O?

• If more than one drive is present. are they properly connected and turned on?

TRSDOS Start-Up Dialog
Whenever you start up or reset the Model I Double-Density Disk System, the
message LOADING TRSDOS will be displayed. After you insert a System disk
into Drive O and close the door, TRsoos will load and the start-up dialog will
appear.

1. The TRSDOS version number and date of creation will be displayed.

2. Displayed next is the amount of RAM and the number of drives in the system.

3. TRSDOS will prompt you to enter the date in the form of MM/DD/YY (i.e., 07/
14/81 for July 14. 1981). Type in the correct date and press (ENTER). TRsoos

will not continue until the date is entered correctly.

4. Next, TRsoos will prompt you to enter the time in the form of HH: MM: SS
(i.e., 14:45:00 for 2:45 p.m.). Type in the correct time and press (ENTER). If
you don't wish to set the time, simply press (ENTER) at the beginning of the
line. TRSDOS will set the time to 12)12): 12)12): 12ll2l.

5. TRSDOS will now display the message:

TRSDOS READY
t ♦ t ♦ t t ♦ ♦ ♦ t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ t ♦ ♦ t t ♦ ♦ t + ♦ + ♦ t ♦ t ♦ t ♦ ♦ ♦ ♦ + ♦ t + t t t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ t ♦

Whenever this is displayed, you are in the TRsoos READY mode and may type in
a TRSDOS command.

Note: Once the time and date has been entered, it will not have to be re-entered
again as long as:

• Power remains ON.

• If reset, the TRSDOS version does not change.

Making a BACKUP (Duplicate) of TRSDOS
Your first operation should be to duplicate the TRSDOS diskette you received
from Radio Shack. The TRSDOS diskette contains a utility program called

2

DOUBLE-DENSITY

BACKUP to accomplish this. (Just for safety, place a write protect tab on the
TRSDOS diskette until you have duplicated it).

I. Locate the TRSDOS diskette and a new, blank diskette. The TRSDOS diskette
will be referred to as the "source," while the blank one will be called the
"destination." during BACKUP.

2. Start TRsoos as explained in the previous section. TRSDOS READY should
be displayed.

3. Type: BACKUP (ENTER).

4. TRSDOS will now load and start BACKUP. It will ask you:

SOURCE DRIVE NUMBER 7

Specify the drive which contains the original TRSDOS diskette by typing:
0 (ENTER).

5. Next TRSDOS will ask:

DESTINATION DRIVE NUMBER 7

Now specify the drive which will be used for making the duplicate TRSDOS.
If you have two or more drives in your system, type: 1 (ENTER). If you only
have one disk drive, type: 0 (ENTER). You will be prompted when to change
diskettes.

6. TRSDOS will ask:

SOURCE DISK MASTER PASSWORD 7

Press (ENTER) (PASSWORD will be used).

7. TRSDOS will ask:

QUICK or FULL VERIFY?
Press (ENTER) (QUICK VERIFY will be used).

8. TRSDOS will analyze the diskette to determine if it contains data or has been
previously FORMATted.

9. If there is data on the diskette, TRSDOS will ask:

DISKETTE CONTAINS DATA, USE DISK OR NOT 7

Type Y. and press (ENTER).

10. FORMAT or the continuation of the duplication process will begin. No more
questions will be asked.

11. On completion, the following message will appear:

BACKUP COMPLETE
TRSDOS READY

Making a Data Diskette (FORMAT)
This section applies to multi-drive systems only.

Drive O must always contain a TRSDOS diskette, so the Computer can have
access to the system programs stored there. Much of the storage capacity of this

3

TRS-80 MODEL I DISK SYSTEM

diskette is taken up by the system programs.

However, the other drives in the system may contain "data" diskettes which do
not have system programs. All of the storage capacity of such diskettes is
available for your programs and data.

The FORMAT utility program takes a diskette and initializes or "formats" it.
If the diskette was previously formatted and contained data, all prior information
can be lost. The resultant diskette does not contain system files and may only be
used in Drive I, 2 or 3.

I. After TRSDOS READY, type: FORMAT (ENTER)

2. TRSDOS will start the formatter program and ask you:

4

FORMAT WHICH DRIVE?
Type: 1 (ENTER)

DISKETTE NAME?
Press (ENTER), (TRSDOS will be used).

MASTER PASSWORD?
Press (ENTER), (PASSWORD will be used).

ANALYZING DISKETTE is displayed. The destination diskette may be new
or unformatted. If the diskette is not formatted, the FORMAT process will
automatically begin.

The destination diskette may contain data. TRSDOS will warn:

DISKETTE CONTAINS DATA, USE DISK OR NOT?
Type: Y (ENTER), and the FORMAT process will automatically begin, and all
prior data will be erased. After formatting is complete. the following message
will be displayed:

WRITING SYSTEM INFORMATION
TRSDOS READY

♦ ♦ ♦ ♦ ♦ ♦ + ♦ + ♦ t ♦ t t f ♦ t ♦ ♦ ♦ ♦ ♦ t ♦ t t ♦ + t ♦ ♦ t + t t + t t + + ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ t ♦ ♦ t t ♦ t ♦ +

DOUBLE-DENSITY

Disk BASIC
Quick Instructions for Using Disk BASIC
In this section we 'II "walk you" through the following procedures:

• Starting Disk BASIC

• Running a simple program

• Saving a program in a disk file

• Loading a program from a disk file

For programming information, see the Disk BASIC section of this manual.
Here we are showing procedures only.

Starting Disk BASIC
Under TRSDOS READY, type: BASIC (ENTER)

The Computer will load and start BASIC. First, it will ask two questions.
Press (ENTER) in response to each of them.

HOW MANY FI LES? (ENTER)
MEMORY SIZE? (ENTER)

A heading will be displayed. followed by:

READY

>
You may now begin using Disk BASIC.

Saving a Program
You should have a program in memory and be in BASic's READY mode. Type:

SAi.iE "PROGRAM" (ENTER)

BASIC will now save the program in a disk file we arbitrarily named
"PROGRAM.'· Any other suitable file name would do.

Loading a Program
For this sample session, we will load the program just saved.

First type: NEW (ENTER) to erase it from memory. (This is to show that it can
be retrieved from the disk file.)

Now type: LOAD "PROGRAM" (ENTER) and BASIC will load the specified
program.

5

TRS-80 MODEL I DISK SYSTEM

You may now list it and run it.

For further information on using Disk BASIC, see Section 3 of this manual.

Cassette Baud Rate under Disk BASIC
TRSDOS sets the cassette Baud Rate at 500 Baud. This Baud Rate is fixed by the
hardware configuration of TRS-80 Model I.

6

DOUBLE-DENSITY

Troubleshooting and Maintenance
If you have problems operating your Model I Disk System, please check the
following symptoms and cures.

If you can't solve the problem, take the unit to your local Radio Shack. We'll
have it fixed and returned to you as soon as possible.

Symptom Cure
Disk drive motors run Check external drive connection sequence.
continuously when the Computer Drive 26-1160 must always be the last
is turned on. external drive.

Computer will not load rnsoos. 1 . Make sure you have inserted the
rnsoos diskette properly in Drive 0.

2. Make sure all peripherals are properly
connected.

Error Messages Look up the message in the TRSoos or
BASIC Error Message Section. The "cure"
should be listed.

Frequent disk 1. o errors 1. Diskette is partially erased. Backup the
diskette, then re-format it.

2. Diskette is worn out. Use backup copy, if
available, to make a new working copy.

3. Disk drives need cleaning or alignment
by Radio Shack service technicians.

4. Drive is not configured to the proper
stepping rate. Reconfigure or reboot.
(See CONFIG.)

Maintenance
For reliable operation. the disk drives must be kept clean and properly aligned.
These procedures should be done by Radio Shack service technicians. according
to the following schedule:

Degree of Use
Commercial data processing
environment

Occasional home use

Maintenance Interval
Every 6 months for medium use.

Every 8-10 months; more often if
needed.

7

8

DOUBLE-DENSITY

Notation and Abbreviations
For the sake of clarity and brevity, we've used some special notation and type
styles in this book.

CAPITALS and punctuation

indicate material which must be entered exactly as it appears. (The only
punctuation symbols not entered are ellipses, explained below.) For example,
in the line:

DUMP LISTER (START= 7000,END = 7100,TRA = 7004)
every letter and character should be typed as indicated.

lowercase italics

represent words, letters, characters or values you supply from a set of acceptable
values for a particular command. For example, the line:

LIST filespec
indicates that you can supply any valid file specification after LIST.

Ellipses indicates that the preceding items can be repeated. For example:

ATTRIB filespec {option, .. .)
indicates that several options may be repeated inside the parentheses.

b

This special symbol is used occasionally to indicate a blank-space character
(ASCII code 32 decimal, 20 hexadecimal).

PRINT "bHblb!"

X'nnnn'

Indicates that nnnn is a hexadecimal number. All other numbers in the text
of this book are in decimal form, unless otherwise noted.

X'7000'

indicates the hexadecimal value 7000 (decimal 28672).

COMPUTER TYPE

Any words, letters, or numbers that are displayed on the Screen will be in
computer type (dot-matrix). Uppercase letters are used; however, your Screen at
times may display lowercase letters instead.

9

10

Specifications
Diskettes

Diskette Organization
Formatted Diskette

Double-Density

Single-Density

Storage Capacity
Double-Density (35 tracks)

Formatted Diskette (DATA)

TRsoos Diskette
without BASIC

TRSDOS Diskette
with BASIC

Operating Temperature

Power Requirements

DOUBLE-DENSITY

5 V4'' mini-diskettes
Radio Shack Catalog
Number 26-305,
26-405 (package of three),
or 26-406 (package of 10)

Single-Sided
Double-Density
40 or 35 Tracks
18 Sectors/Track
256 Bytes/Sector
6 granules/track
Single-Sided
Single-Density
35 Tracks
10 Sectors/Track
256 Bytes/Sector
2 granules/track

198 Granules

128 Granules

120 Granules

55 to 80 Degrees Fahrenheit
13 to 27 Degrees Celsius
120 VAC, 60 Hz, 28 VA
240 VAC, 50 Hz, Australian;
220 VAC, 50 Hz, European.

11

12

TRSDOS
TRSDOS
TRSDOS
TRSDOS
TRSDO
TRSDOS
TRSDO
TRSDOS
TRSDOS
TRSDOS
TRS OS
T [Y)S

-/7
~

---------------------···---···------- ---·---·

DOUBLE-DENSITY

2 I Description of TRSDOS

What Is TRSDOS?
TRSDOS (pronounced "TRISS-Doss") stands for "TRS-80 Disk Operating System."
It is a comprehensive set of system routines and file management utilities.
TRSDOS fulfills three roles:

I . Master Program

2. Command Interpreter

3. Program Manager

As the master program. TRSDOS enables the microprocessor and its various
components to interact efficiently. The components include:

• Random Access Memory (RAM). TRSDOS reserves space for its own needs and
allocates space for user programs.

• Disk Drives. TRSDOS interfaces with-the disk hardware and provides a file
system for storing system and user data on diskettes.

• Input/output devices. These include the keyboard. video display, printer, and
RS-232-C equipment (if installed).

TRSDOS is also a command interpreter. Whenever it displays TRSDOS READY.
you may enter commands that control how the system works. These are known
as "library" commands.

In its role as program manager, TRSDOS will load and run system or user
programs. During this time, the system or user program is in control of the
Computer.

Figure 2 illustrates the relationships between these three roles.

Where Does BASIC Fit In?
Referring to Figure 2, you'll see that Disk BASIC falls under the ''language
package'' category.

Disk BASIC consists of some general enhancements to Level II BASIC. plus the
disk input/output capability. It uses Level II BASIC (stored in ROM) whenever
possible. For instance, the Level II BASIC ROM includes all of the mathematical
functions.

If you're used to the non-disk system, there's one difference you should
understand from the beginning: In the non-disk system, BASIC is in control when
you start-up. In the disk system, however, TRSDOS is in control when you start
up. You have to tell TRSDOS to load and run BASIC. Only then can you begin
running a program written in BASIC.

13

TRS-80 MODEL I DISK SYSTEM

Master Program

/ ~
Program Manager Command

Interpreter

/t~
System Utility
Programs (FORMAT,
BACKUP, etc.)

Figure 2. TRsoos Roles.

How TRSDOS Uses RAM
TRSDOS consists of:

• an executive program file

• auxiliary system-routine files

• a library-command file

• and the Disk BASIC file.

Language packages
(Disk BASIC,
Editor/ Assembler,
etc.)

Z-80
User
Programs

The executi,·e program is loaded into RAM on power-up, and remains there at all
times while TRSDOS is running. For this reason it is called the "resident"
TRSDOS program. It includes certain system routines, tables, pointers, and Input/
Output drivers.

The auxiliary svstem files contain routines and commands which are loaded as
needed to execute your commands and programs. These routines load into an
"overlay" area of memory. When TRSDOS has executed the routine, another one
may be loaded in the same area, or "overlayed." The use of overlays means that
execution of system routines will not affect your memory area (addresses above
5 IFF hex).

The lihran command.file contains the routines for executing most of the
operator commands. These routines load into memory addresses from 5200 to

14

------ ---------------------- ----------------------------------

DOUBLE-DENSITY

6FFF. Therefore your machine language programs should generally be located
above 6FFF. That way they won't be affected by execution of the library
commands.

There are three library commands which use all available memory. They are
BACKUP, FORMAT and COPY (for single-drive copying.)

Disk BASIC is a set of enhancements to Level II BASIC. When you type in its file
name, BASIC, it will load into memory beginning at 5200, and begin execution.

4E00
5400

27K

43K
B000

BADF
BD00

-~ cooo

TRSDOS Memory Map

ROM

DEBUG --

23K
235K

Do
KEYBD

32K RAM
MACHINE

TRSDOS
--

395K

39K

DO
KEYBD

48K ROM
MACHINE

0

2

3

4000

5200
5

6

7

8

9

A 48K

B

C

D

E

F
FADF
FD00

0

15

16

Using TRSDOS

Entering a Command
Whene\'er the fRSDOS prompt

TRSDOS r~u,ov

DOUBLE-DENSITY

is displayed. you can type in a command, which can be no more than 63
characters in length. You must press IENTIID to end the line. TRSDOS will then
··accept·· the command.

For example. type: CLS (ENIIB) TRSDOS will clear the Display and the TRSDOS

READY prompt vvill reappear.

In general, your commands will require more than one word. For example, to
kill (delete) a file named MYNAME, you have to specify the command and the
fiicnan1e.

!<.ILL. MYI\IAME (~~nm
tells TRSDOS to find the file named MY'.'IAME, eliminate it from the diskette. and
release the space previously occupied by that file.

Whenever you type in a line. TRsoos follows this procedure:

1. First it checks to see if what you've typed is the name of a TRSDOS command.
If it is. TRSDOS executes it immediately.

2. If ,vhat you typed is not a TRSDOS command. then TRSDOS will check to see if
it's the name of a program file on one of the drives.

1. When searching for a file, TRSDOS looks first through Drive 0. then Drive 1,
etc.. unless you include a particular drive specification with the file name
or specify the MASTER command (see Library Commands).

lf TRSDOS finds a specified user tile, it will load and execute the file if it is a
program tile. Otherwise, you'll get an error message.

System, Program, and Data Files

System hies contain the TRSDOS routines necessary to execute your commands.
These files include language software released by Radio Shack.

Program files are stored in a special program file fo1mat which allows them to
be loaded and executed directly from TRSDOS. The BASIC interpreter is an
example of a Program file.

Data files are not stored in Program file format but are stored as data files. Data
fiies cannot be loaded or executed from TRSDOS. Programs saved from BASIC or
created by other Program files are stored as data files.

17

Repeat Key

The Douhle-Dcn~ity Model l ha-; the ability to ""repeat"· keystroke~. By holding
a key down. the key hoard outputs a ~tcady ~tream of that character.

18

---------------·------

3/TRSDOS Commands

APPEND
Append files

APPEND source-file destination-file

source-file is the specification for the file which is to be
copied onto the end of the other file.

destination-file is the specification for the file which is to
receive the appendage (addition).

Note: Both source- and destination-files must be in Asen
format (data files or BASIC programs saved with the A

option) .

.\l'l'EJ\ll copies the contenb of the .1ourcc~/ile onto the end of the desr111orin11jile.
The so11rcc~file is unaffected. while the dcsrinarion)ilc is extended to include the
source)i!c.

Note: The logical record lengths must match. See DIR for more information nn
logical record lengths.

This command is most useful for data files and is not recommended for BASJC or
machine-language programs. Because of an end-of-program marker TRSDus puh
at the end of these programs, if these types of files are appended they would not
load (or run) past the end-of-program marker of the first program. In lllher
words. the second program would be ignored. To combine two BASW program
files. use the BASIC command MERGE. Machine-language programs cannot he
appended.

Examples

APPEND WORDFILEIC WORDFILE/D

A copy of \\ORDI·ILL c is appended to WORDHLE o.

APPEND REGIONl/DAT TO TOTAL/DAT.GUESS

A cPpy of RH,ION I DAT is appended to TOTAL OAT. \\ hich is protected with the
passwmd (,lT'.-.s. Note: The delimiter ··ro" is optional.

19

Sample Uses

Suppose you have two data tiles. PAYROLL A and PAYROLLB.

PAYROLL/A

Atf,ir,s I W.R.
Baf,er, J.B. ••••••••
Cha111bers, C.P ••• ,,,
Dodson, M,W,
Kicf,arr1on, T,Y,

♦ ♦ ♦ ♦ ♦ ♦ ♦

You can combine the two files with the command:

APPEND PAYROLL/B PAYROLL/A

PAYROLL A will now look like this:

PAYROLL/A

Atf,ins, W,R,
Baf,er, J,B, ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

Cha111bers1 C.P,
Dodson, M,W,

t ♦ + + ♦

♦ ♦ ♦ ♦ ♦ ♦•

Ki cf, a111 on , T. Y, , , , , ,

Le1A1ist G.E. •••••••+
Miller, L,O, ... ,,.,
Peterson, B,
Rodrisuez, F. ♦• + ♦ ♦ ♦

PAYROLL/B

Le1,1is, G,E,
Miller, L.O,
Peterson, B,
Rodri:luez, F,

PAYROLLB wili be unaffected. Tn see the APPENDed file. type LIST PAYROLL/A
(ASCII).

ATTRIB
Change a File's Password

20

ATTRIB filespec (visibililY,ACC = name,UPD = name,PROT = level)

visibility must be I or N. Tells TRsoos whether the file is Invisible (1) or
Non-invisible (N) (see DIR). If omitted, visibility is unchanged.

ACC = name tells rnsoos the access word. If omitted, the access word
is unchanged. If Ace=, is used, the access word is set to
blanks.

UPD = name tells TRsoos the update word. If omitted, the update word
is unchanged. If UPD =, is used, the update word is set to
blanks.

----------- ------- ·-----···-·

DOUBLE-DENSITY

PROT = level tells rnsoos the protection level for access. If omitted,
level is unchanged.

Level

FULL

KILL

NAME

WRITE

READ

EXEC

Degree of access granted by access word

Full access, no protection.
Kill, rename, read, execute, and write (gives
total access, i.e., the least-protected).
Rename, read, execute, and write.
Read, execute, and write.
Read and execute.
Execute only.

Note: Each level allows access to itself plus all lower levels.

ATTRIB lets you change the passwords Jo an existing file or makes the file
invisible or non-invisible. Passwords are initially assigned when the file is
created. At that time. the update and access words are set to the same value
(either the password you specified or a blank password).

Examples
ATTRIB DATAFILE (I ,ACC=JULYlLI ,UPD=MOUSE ,PROT=READ)

Makes the file invisible, sets the access password to JULYI4 and the update
password to MOUSE. Use of the access word will allow only reading and
executing the file.

ATTRIB PAYROLL/BAS,SECRET IN,ACC=,)

Sets the access word to blanks. The file is made non-invisible and the protection
level assigned to the update word is left unchanged.

ATTRIB OLD/DAT,APPLES <UPD=,)

Sets the update word to blanks.

ATTRIB PAYROLL/BAS.PW IPROT=EXECl

Leaves the access and update words unchanged, but changes the level of access.

ATTRIB PAYROLL/BAS.PW IN,ACC=, UPD=, PROT=FULLl

Sets both the passwords to blanks and removes all protection.

21

~ TRS-80 MODEL I DISK SYSTEM

~.

Sample Uses

Suppo,c \OU have a data file, PAYROLL. and you want an employee to use the
file in preparing paychecks. You want the employee to be able to read the tile
hut not to change it. Then use a command like:

ATTRIB PAYROLL (I ,ACC=PAYDAY ,UPD=Al.JOCADO ,PROT=READ)

Now tell the clerk to use the password PAYDAY (which allows read only): while
only you know the password. AVOCADO, which grants total access to the tile.

2 r, c_

DOUBLE-DENSITY

Protecting BASIC Programs

You may give a BASIC program execute-only protection using the ATTRIB

command. For example, suppose the program is named TEST (no password).
Under TRSDOS READY, execute this command:

ATTRIB TEST (ACC=,UPD=VALLEY,PROT=EXECl

Now TEST has a blank access password, an update password of VALLEY, and an
access level of execute only. Without using the update password, there is now
only one way to execute the program:

I. Start BASIC.

2. Type: RUN "TEST"

(This is the only way to access the program. If the operator attempts to LOAD

it instead. BASIC will erase the program from memory before returning with
READY.)

After the RUN "TEST" command, BASIC will load and execute the program. If
the operator presses (BREAK) or if the program ends normally, BASIC will erase the
program before returning with the READY message. This makes it impossible to
obtain a listing of the program- unless the update password is used.

Of course. if you use the update password. you may gain full access to the
program.

AUTO
Automatic Command after System Start-up

AUTO :d command-line

:d specifies a drive number where the AUTO is to be written. :dis
optional; if omitted Drive O is used.

command-line gives TRsoos a command or the name of an executable
program file created by eu1Lo. If command-line is given, the
command will be executed on Reset/Power-up. If command-line
is omitted, the previous AUTO command is erased from the
diskette. command-line must not exceed 30 characters plus the
carriage return.

This command lets you provide a command to be executed whenever TRSDOS is
started (Power-up or Reset). You can use it to get a desired program running
without any operator action required, except for typing in the date and time.

23

TRS-80 MODEL I DISK SYSTEM

When you enter an auto command. TRSoos writes the command line into the
start-up procedure of the diskette in the drive you specified (provided it is a
TRSDOS diskette). TRSDOS does not check for valid commands: if the command
line contains an error, it will be detected the next time the System is started up.

You may install an automatic command on a diskette in a drive other than Drive
0. However, an AUTO diskette must contain an operating system and must be
used in Drive 0. (An AUTO command written on a data diskette will not be used
during Reset or Power-up).

Sample
AUTO DIR (SYS)

The Screen will display AUTO = 'DIR (SYS) 1 as an acknowledgement. The
next time the computer is Reset or Powered-up. the message - -AUTO
FUNCTION ENGAGED- - will be displayed followed by the System Directory.

Example

AUTO BASIC

Tells TRSDOS to load and execute BASIC each time the System is started up.

AUTO PAYROLL/CM □

Tells TRSoos to load and execute PA YROLL/CMD (must be a machine-language
program) after each System start-up.

AUTO DO STARTER

Tells TRSDOS to take automatic key-ins from the file named STARTER after each
System start-up. See BUILD and DO.

AUTO DIR, FREE, LIB

TRsoos executes DIR only, FREE and LIB are ignored.

To Erase an AUTO Command
Type: AUTO (ENTER)

This tells TRSDOS to erase any automatic command. The command will be
deleted the next time you power-up or RESET the System.

The acknowledgement: AUTO = 1 1 is displayed after an erasure.

To Override an AUTO Command
You can bypass any automatic command by holding down any key except
(BREAK) while pressing RESET. You must continue holding down the key until you
are prompted for the date or TRSDOS READY is displayed during the
initialization process.

24

DOUBLE-DENSITY

for the date ur TRSDOS READY is displayed during the initialization proces~.

BACKUP
Create an Exact Copy of an Original Disk

BACKUP :source:destination

:source specifies the drive containing the original diskette. If omitted,
rnsoos will prompt you for this information.

:destination specifies the drive containing the diskette to receive the copy. If
omitted, rnsoos will prompt for it.

:source and :destination may reference the same drive.

BACKUP copies the contents of the source diskette to the destination diskette.
BACKUP will make a "mirror" image of a diskette. This gives you a "safe"
copy of the diskette. Always keep an extra copy of data or programs you have
stored on your diskettes.

Note: The destination diskette must not be write-protected. Placing a write
protect tab on the source diskette is recommended until a successful BACKUP

is made.

TRsoos will prompt you at each step after you type: BACKUP CENTER)

If you omitted the source/destination-drive numbers. TRSDOS will begin with
the prompt:

SOURCE DRIVE NUMBER?

Type in the number of the drive that contains the source diskette and press
(ENTER).

DESTINATION DRIVE NUMBER?

Type in the number of the drive that will contain the destination diskette and
press (ENTER).

SOURCE DISK MASTER PASSWORD?

Type in the password assigned to your source diskette. Then press (TI{fERJ. The
TRsoos default password is PASSWORD. If this password is assigned to your
source disk, you may press (ENTER) to this prompt.

If you are doing a BACKUP with more than one drive, TRSDOS will ask:

OU I CK OR FULL VERIFY?

25

TRS-80 MODEL I DISK SYSTEM

Type O (Quick) or F (Full) and press (ftfi11D. If this optional response is not
answered. 0 is used. Ir you select full. TRSDOS will do a byte to byte comparison
of all allocated portions of the diskette (those with information stored on them).
If you select quick this comparison will not be done.

TRSDOS will now display the message: ANALYZING DISKETTE. During this time
TRSDOS checks to see if the diskette contains any files. if the diskette is already
formatted. and if the source diskette is single or double-density.

It doesn"t matter what the density of the destination diskette is. If the source
diskette is double-density and destination diskette is single. BACKUP will re
format the destination diskette to double-density.

Important Note: BACKl'P cannot copy from double-density to single-density or
single-density to double-density.

To move tiles or programs from a single-density diskette to a double-density
diskette (or vice versa) use COPY.

If the diskette contains files. TRSDOS will display:

DISK CONTAINS DATA, USE DISK OR NOT?

Type in Y (Yes) or N (No).

If the diskette was already formatted. the following will be displayed:

DO YOU WISH TO RE-FORMAT THE DISK?

Type in Y (Yes) or N \No).

If you specified the source/destination drives. TRSDOS will request the
PASSWORD. skipping the first two steps.

TRSDOS will then take charge of formatting and verifying the destination disk as
well as letting you know if there are any errors or flawed tracks.
If the source-drive and destination-drive are the same. TRSDOS will display
INSERT SOURCE DISK or to INSERT DESTINATION DISK when necessary.
Wait until the drive motor is stopped before doing so.

After a single-drive BACKl'P on Drive 0. TRSDOS will display:

** BACKUP COMPLETE**
INSERT SYSTEM DISKETTE <ENTER)

Be sure there is a TRSDOS diskette in Drive O and press (rNTER). You will then
return to TRSDOS READY.

Be careful when making HACKL:Ps on drives that are CONFIGured differently.
There will he abnormal results if a BACKUP is attempted from a 40 track diskette
to a 35 track diskette.

(See CONFIG for more information.)

26

DOUBLE-DENSITY

BLINK
Turn Blinking Cursor ON and OFF

BLINK (switch)

switch is ON or OFF. switch is optional; if omitted rRsoos uses ON.

This command allows you to turn off the blinking cursor if you prefer a steady
non-blinking cursor. It also allows you to turn the blinking cursor back on.

Example
BLINK (OFF)

This will turn off the blinking effect of the cursor.

BLINK (ON)
BLINK

This returns the cursor to its original blinking mode.

BUILD
Create an Automatic Command Input File

BUILD filespec

filespec is a file specification which can include an extension. If an
extension does not exist, BUILD adds its own extension < 1BLD).

This command lets you create an automatic command input file which can be
executed via the DO command. The file must contain data that would normally
be typed in from the keyboard to the TRsoos READY mode.

27

BUILD files are intended for passing command lines to TRSDos just as if they'd
been typed in at the TRSDOS READY level. Note: CUAR rnnnot be used in a
DO file.

When you enter the BUILD command. BL'l!.D creates the tile and imrnediatelv
prompts you to begin inserting lines. Each time you complete a lmc. press "
(ENTER). (While typing in a line. you can use the usual cursor control keys for
erasures and corrections.)

To end the BUILD file. simply press (fillEAK) at the beginning of a line.

First type: BU I LD files pee

Example

First type: BUILD STARTUP (INTER;

You will then be prompted to type in the command text. You may type in up to
63 characters. Press CEN.I.IBl after each command line:

MASTER (DR I t.JE = 1) (ENTER)
WP (DRll,IE=l2l) (ENTER]
DIR (ENTE])
(BREAK)

This builds the DO file called STARTUP. To run. type DU STARTUP CENTER:.

CLEAR
Clear User Memory

28

CLEAR (START= aaaa,END = bbbb,MEM = cccc)

START= aaaa tells TRSDOS where to start clearing user memory. aaaa
is a four-digit hexadecimal number from 1000 to the end of user
memory. If this option is omitted, 1000 is used. If this option is

used, END= bbbb must also be used.

END= bbbb tells TRSDOS to clear user memory to a specified end. bbbb
is a four-digit hexadecimal number no less than the START

number and no greater than the top of memory. If this option is
used, START= aaaa must also be used.

MEM = cccc sets the memory protect address. cccc is a four-digit
hexadecimal number from 0000 to FFFF. If this option is omitted,
the memory protect address is reset to end of user RAM.

If all options are omitted, all available RAM is cleared, memory
protect is reset to end of memory, the Display is cleared.

Note: START and MEM cannot be set below x·1000·. END and MEM cannot be set above
X'FCFF'.

DOUBLE-DENSITY

This command gets you off to a fresh start.

Depending on the options you select, this command will:

• Zero user memory (load binary zero into each memory address above 7000H)

• Clear the Display

• Un-protect all memory

Note: CLEAR cannot be used in a DO file.

Example

CLEAR (START=9000,END=0A000)

Note: Hexadecimal numbers which begin with a letter must be prefaced by zero
(see above example).

CLEAR (MEM=7000)

CLOCK
Turn On Clock Display

CLOCK (switch)

switch gives rRsoos one of two options, ON or OFF. If switch is omitted,
TRSDOS uses ON.

This command controls the real-time clock display in the upper right corner of
the Video Display. When it is on, the 24-hour time will be displayed and
updated once each second, regardless of what program is executing.

Clock display is OFF at TRsoos start-up.

Note: Except during cassette and disk vo, the real-time clock is always running,
regardless of whether the clock display is on.

Examples

CLOCK

Turns on the clock display.

29

TRS-80 MODEL I DISK SYSTEM

CLOCK (OFF J

Turn~ the clock display off.

See TIME and DATE.

CLS
Clear the Screen

CLS

This command clears the Display and puts it in the 64 character/line moc.k.

Example

CLS

CONFIG
Change Stepping Rate and Specify
Number of Tracks

30

CONFIG :d (STEP= X, TRACK = y)

:d specifies the drive that is to be configured. The drive number must
be specified.

TRACK= y specifies the number of tracks for that drive where y = 35
or 40. TRACK is optional; if omitted, 35 is used.

STEP= x specifies the stepping rate of that drive where x = :

0= 6 MS
1 =12 MS
2=20 MS
3=30 MS

STEP is optional; if omitted, 30 is used.
rnsoos starts up at the slowest rate 30 MS and is set for 35 tracks.

DOUBLE-DENSITY

This command allows you to change the contiguration of a disk drive by
changing the stepping rate (speed of accessing a file) for that drive and
specifying the numher of tracks for that drive.

There are two different models of drives for the TRS-80 Model I. (This should not
he confused with the two different catalog numbers. This command applies to
both 26-1160 and 26-1161.) These drives can be distinguished hy the serial
numhers. For case of explanation. the drives shall be referred to as SUFFIXED

and NON-SL'fl L\:El)

S\TFIXFU·- any drive whose serial numher (on bottom of drive) has a suffix
of·· - 1 •·

:\O'\;-S\TFIXI--J) --- any drive whose serial numher does not have a suffix.

The stepping rate can only be changed on Sl'HIXED drives. Do not change the
stepping rate on MJ'\;-SLTFIXID drivl'~ or drives without serial numbers.

CO'i!lc; is not a permanent change. Ir the computer is turned Off or reset.
TRSDOS will start up at 30 MS for the stepping rate and 35 for the number of
tracb.

Note: If you should configure your drive to a rate other than 30 MS and receive
exce~sive Io ennrs or can ·t read the directory. then your drive probahly cannot
run at any rate other than 30 \1S.

CONI·IC, also allows tht' number of tracks to be changed. Only the SUFFIXED

drives can. however. be opaated at 40 tracks per diskette. NON-SUFFIXED drives
should be operated at 35 tracb per diskette.

Note: If you do not know which drive you have. don ·t take a chance~ don't
change the stepping rate or the number of tracks per disk. Be sure to make a
backup of your TRSDos diskette before trying to make any changes.

If any problem occurs. reset the Computer and try again. If the problem still
exists. your drive probably cannot be configured to that stepping rate or number
of tracks. Try using a different value nr don't use CONFIG at all (stepping rate
and number of tracks will stay at their default values).

IOR.~1.'\T and BACKLP \vill format diskettes according to the configuration of the
dri\'e. Be extremely careful when mixing drive configurations (tracks
especially). This L·mild cause abnormal results. (i.e .. if a BACKUP is attempted
fr()m a ..io track disketteidriw to a 35 track diskette/drive.)

Example

CONFIG :1 (STEP=2l

This sets Drive l at a stepping rate of 20 MS.

CONFIG :2 (STEP=1, TRACK=ll0!

This sets Drive 2 at a stepping rate of 12 MS and the number of tracb to 40.

31

Permanent Configuration Change

This PATCH should be applied to Workin? Copy of System Diskette, not the
Master Copy.

PATCH ·o:d (R = 2, B = bbb, F = ff, C = cc)

d= Drive # of Working Copy

bbb= Byte Offset (See Table Below)

ff= Find Byte (See Table Below)

cc= Change Byte to (See Table Below)

DRIVE# STEPPING RATE

0 110
1 111
2 112
3 113

OF TRACKS

114
115
116
117

To find bbb, cross-inde'X the drive that is to be changed.

Stepping rate can be one of four values:

STEPPING RATE

6 MS
12 MS
20 MS
30 MS

of tracks can be either of two values:

Example

OF TRACKS

35
40

BYTE VALUE

00
01
02
03

BYTE VALUE

23
28

{
T~1s value is ~et on
onginal diskette

{
This value set on
original diskette

To change Stepping Rate on Drive #2 from 30 MS to 12 MS and Working Copy
is on Drive #1.

PATCH *IZl:1 (R=2, B=112, F=03, C=01)

To change # of Tracks on Ori ve # I from 35 tracks to 40 tracks and Working
Copy is on Drive #2.

PATCH *IZl:2 (R=2, B=115, F=23, C=28)

32

------------------------------ ------

DOUBLE-DENSITY

COPY
Copy a File or Files

Three syntaxes:

A) COPY source-fi/e:d destination-file:d
source-file is a file specification of the file to be copied.
destination-file is a file specification for the name and drive of the

duplicate file.
:dis the drive number where that file is found.

B) coPY source-file:d :d
source is defined above.
:d tells rRsoos to copy the file onto drive d, using the same filename.

C) COPY / ext :d :d
!ext is a wild-card file specification in which the file name is omitted

and the extension is given. rnsoos will copy all files except
password protected files which have a matching extension,
regardless of the filename.

Note: Drive numbers are required except on syntax A. For syntax A,
destination-file defaults to Drive O.

This command copies source~file into the new file defined by destination~file.
This allows you to copy a file from one disk to another. using a single-drive if
necessary. In the latter case. you must specify drive number in both file
specifications. You will be prompted when to swap diskettes.

COPY also allows you to copy files from a single-density diskette to a double
density diskette and vice versa. TRSDOS examines each diskette (source and
destination). determines the density of each and does the COPY automatically.
For example. if you have a double-density TRSDOS diskette in Drive 0. and a
single-density diskette in Drive I, then the command:

COPY DATAFIL/TXT:1 DATAFIL/TXT:0

would copy the file DATAFIL:TXT from the single-density diskette to the double
density diskette. The command:

COPY DATAFIL/TXT:0 DATAFIL/TXT:1

33

TRS-80 MODEL I DISK SYSTEM

would also work. It doesn't matter whether a single or double-density diskette is
in a drive, TRSDOS will know.

Important Note: Wild card COPY (syntax C) does not allow copying to the same
disk.

Example
COPY OLDFILE/BAS:0 NEWFILE/BAS:1

Copies OLDFILbBAS on Drive O into a new file named NEWFILEiBAS on Drive 1.

COPY NAMEFILE/TXT:2 :1

This command specifies a file named NAMEFILE/TXT on Drive 2 to be copied to
Drive 1 using the same filename.

COPY FILE/EXT:0 :1

This command copies FILE/EXT from Drive O to Drive 1.

COPY /BAS:0 : 1

tells TRsoos to copy all Drive O files which have the extension 1BAS. The files
will be copied onto Drive 1, using their present file names and extensions.

Note: Whenever a file is updated, use COPY to make a backup file on another
diskette. You can also use COPY to restructure a file for faster access. Be sure
the destination diskette is already less segmented than the source diskette;
otherwise. the new file could be more segmented than the old one. (See FREE

for inforhrntion on file segmentation.)

To rename a file on the same diskette, use RENAME, not COPY.

CREATE
Create a Pre-allocated File

34

CREATE fi/espec (LRL = aaa,REC = bbb)

LRL = aaa is the logical record length. aaa is a decimal number
between zero and 255. If omitted, 256 is assumed.

REC= bbb is the number of records desired. If omitted, no records are
allocated.

DOUBLE-DENSITY qllil
q .. , ..

This command lets you create a file and pre-allocate (set aside) space for its
future contents. This is different from the default (normal) TRSDOS procedure in
which space is allocated to a file dynamically. i.e .. as necessary when data is
written into the file.

If you open the file for sequential writes and write data to it. TRSDOS will de
allocate (recover) any unused granules when the tile is closed. If you open the
file for random access. TRSDOS will not de-allocate space when the file is closed.

You may want to use CRFATE to prepare a file which will contain a known
amount of data. This will usually speed up file write operations. File reading
will also be faster. since pre-allocated files are less segmented or dispersed on
the disk - requiring less motion of the read/write mechanism to locate the
records.

If you create a tile and the last record is on a granule boundary. an extra granule
may be allocated to the file.

Examples
CREATE DATAFILE/BAS (REC=300, LRL=0)

Creates a tile named DAT AFILEIBAS. and allocates space for 300 256-byte
records.

CREATE NAMES/TXT,IRIS (LRL=G4,REC=50)

Creates a file named NAMl'STXT protected by the password IRIS. The file will
be large enough to contain 50 records. each 64 bytes long.

CREATE PAYROLL/BAS

Creates a tile named PA YROLL.'BAS but allocates no space to it.

Sample Use

Suppose you arc going to store personnel information on no more than 250
employees. and each data record will look like this:

Name (Up to 25 letters)
Social Security Number (11 characters)
Job Description (Up to 92 characters)

Then your records would need to be 25 + 11 + 92 = 128 bytes long.

You could create an appropriate file with this command:

CREATE PERSONNL/TXT (REC=250,LRL=128)

Once created. this pre-allocated file would allow faster writing than would
a dynamically allocated file, since TRSDOS would not have to stop writing
periodically to allocate more space (unless you exceed the pre-allocated
amount).

', ---~ , __________ -

35

DATE
Reset or Get Today's Date

DATE mmldd!yy

mmldd!yy is the specification for the month (mm), day (def) and
year (yy).

Each must be a two-digit decimal number between the following
ranges:
mm 01-12
dd 00-31
yy 00-99

The specifications are an option; however, if one specification is
used, they all must be used.

If mm!dd!yy is omitted, TRsoos displays the current date.

If mmldd!yy is given, rnsoos resets the date.

This command lets you reset the date or display the date.

When you request the date. TRSDOS displays it in the format: 0 7 / 25 / 80 for
July 25. 1980.

Examples

DATE

Displays the current date.

DATE 07118/80

Resets the date to July 18. 1980.

36

DOUBLE-DENSITY ''· ; Iii
•

DEBUG
Start Debug Monitor

DEBUG (switch)

switch gives TRSoos one of two options, ON or OFF. If option is omitted,
TRSDOS IIStS ON.

This command starts the debug monitor, which allows you to enter. test, and
debug machine-language programs. (Note: BASIC programs cannot be debugged
since portions of BASIC and DEBUG occupy the same memory locations.)

Its features include:

• Full- or half-screen displays of memory contents

• Commands for modifications to RAM and register contents

• Single-step execution of programs

• Breakpoint interruption of program execution

• Transfer of control (Jump)

• ""Editing" of disk-files

DEBUG uses the memory area from X'4Eoo· to X'53FF' (see TRSDOS Memory
Map). DEBUG can only be used on programs in the user area x·s400· to TOP.

Type: DEBUG (ENTER)

This turns DEBUG ON. The command stays in the TRSDOS READY mode but the
DEBL'G program is set to execute under any of the following conditions:

• When (BREAK) is pressed

• After a program is loaded and before its first instruction is executed.

• Upon detection of an error.

Press: (ID

to exit DEBUG and turn off the "debugger.''

Command Description
Debug commands are usually entered by pressing a single key. In most cases,
you do not have to press (ENTER) after the command has been typed. Either a
prompt will immediately be displayed or DEBUG will execute the operation
without further instruction.

·~~

37

·---·---.--· ... -------

TRS-80 MODEL I DISK SYSTEM

In some cases, you will have to enter a specific hexadecimal value or address
(see Rand J commands, for instance). Instead of pressing (ENTER) after the
address is typed in, you will have to press (SPACEBAR).

Once you have entered the DEBUG program, you may use any of the following
special commands:

D (Display Memory Contents)

Press ([) to display the contents of memory. TRSD0S will respond with the
prompt: D ADDRESS = You should type in the hexadecimal address of the
memory location you wish to see.

The display will be either half- or full-screen, depending on the format you are
currently using (see below).

Note: If memory address displayed on the Screen is between 0 and 5400, then
the D command must be used to move the display into the user area. This will
allow the use of 8 and CJ.

X (Half-Screen Display)

Press 00 to put the Display in the half-screen format. A .128-byte block of
memory will be displayed starting with the next lowest address which is a factor
of 16.

Figure 4 shows a typical half-screen format.

S (Full-Screen Display)

Press ® to display the contents of a 256-byte block of memory starting with the
next lowest address which is a factor of 256.

Note: The last 16 bytes on the Display will be overlaid by any command line
typed in after the full-screen display is updated.

M (Modify RAM)

Press 00 to change to the disk utility display format (see the F command).
TRSD0S will respond with the prompt: M ADDRESS = You should type in the
four-digit hexadecimal address of the memory location you wish to modify,
followed by a blank space (anything other than a space will abort the
command).

The display will change to the memory edit format. The cursor will appear as a
blinking character at the specified location.

To exit the modify mode, press (ENTER) to keep all changes made.

38

----------------------- - ------------ -

DOUBLE-DENSITY

Start address
of one 16-byte
"row" of RAM

----1~ RAM display- ◄I---,
hex contents
of each byte

Z-80 register contents
Op-code Instructions at the "PC" address

Figure 4. Half-Screen Format.

R (Change Register Contents)

Raa,bbbb rsPACEBARl

aa Is the name of one of the register pairs AF, ac, DE, HC, or PC.

bbbb is the four-digit hexadecimal val_ue which will be loaded into aa.
If fewer than four digits are typed in before pressing (SPACEBARl,
leading zeros are assumed. '

ASCII display
(· indicates a

nondisplayable
character)

39

TRS-80 MODEL I DISK SYSTEM

Drive#
Byte Offset

Record # within Record

Figure 5. Full-Screen Format

40

Hexadecimal Contents of

Each Byte i
ASCII Translation

DOUBLE-DENSITY

I (Instruction Single-Step)

Pressing (1) will allow the Computer to execute a single Z-80 instruction. The
display will then be updated.

The instruction in the memory contents referenced by the program counter is
executed. The program counter is increased by the appropriate value. and the
control is returned to DEBUG.

DEBUG will not, however, step through a call or jump into a ROM address.

C (Call Single-Step)

If you wish to complete an entire call/return sequence. press (CJ. The call is
then executed and control is returned to DEBt:G when the subroutine returns.
Otherwise. this instruction acts just like the I command.

You will not be able to step through a call or jump into a RUM address.

; (Increment Display Address)

If the Display is half-screen. the first location shown is incremented by 16 when
you press G]. If the full-screen format is displayed. the starting address will be
incremented by 256.

- (Decrement Display Address)

If the Display is half-screen. the first location is decremented by 16 when you
press C=--J. If the full-screen format is displayed. the starting address will be
decremented by 256.

J (Jump)

Press QJ to transfer control to a machine-language program. setting optional
breakpoints.

Debug will respond with the prompt: J ADDRESS? =

You may type in a jump address and a breakpoint address. The command is
terminated when you press (ENTE]). Type in the addresses in one of three
formats:

J ADDRESS? = aaaa,bbbb CEHilID
J ADDRESS? = aaaa (ENTER)
J ADDRESS? = ,bbbb CEHilID

aaaa is a four-digit hexadecimal address specifying the jump
destination. If omitted, the address in the PC register is used.

41

TRS-80 MODEL I DISK SYSTEM

bbbb is a four-digit hexadecimal address specifying a breakpoint.
Before the Computer executes an instruction at this address, it
will return control to DEBUG. If this address is omitted, control
will not return to DEBUG.

Notes: Breakpoints must be set at the beginning of z-xo instructions. You may
not set breakpoints in RUM addresses. The breakpointed address will contain an
X"FT until the breakpoint is encountered. Then the original contents will be
restored and DEBLCi will take control again.

Q (Quit)

Pressing CID turns off nrncu and returns control to TRSDOS.

DIR
List the Diskette Directory

DIR :d(INV,SYS,PRT)

:dis the desired drive directory. If omitted, Drive O is assumed.

1 or 1Nv lists the invisible user files. If omitted, non-invisible user files are
listed.

s or svs lists system and user files. If omitted, only non-invisible user files
are listed.

P or PRT lists the directory to the Printer. If omitted, the directory will be
listed on the Video Display only.

If option is not given, TRsoos lists non-invisible user files in Drive O.

This command gives you information about a disk and the files it contains. It
will work on both single and double-density diskettes.

To pause the listing. press @I]. To continue. press (ENTER). To terminate the
listing, press (BREAK). When the screen becomes full, DIR will automatically
pause. To continue. press (ENTER).

Examples
DIR

Displays the directory of non-invisible user files in Drive 0.

42

• DOUBLE-DENSITY

DIR :1 (PRT)

Lists the directory of the user files in Drive 1 to the Printer.

Sample Directory Listing

(See Figure 6.)
Definition of column headings

G) File Name-The name and extension assigned to a file when it was created.
The password (if any) is not shown.

® Attributes -A four-character field.

The first character is either r (Invisible) or N (Non-invisible).

The second character is s (System) or* (User) file.

Figure 6. Directory Listing.

43

TRS-80 MODEL I DISK SYSTEM

The third character gives the password protection status:
x The file is unprotected (no password).

A The file has an access word but no update word.

u The file has an update word but no access word.

B The file has both update and access words.

The fourth character specifies the level of access assigned to the access word:

0 Total access

1 Kill file and everything listed below.

2 Rename file and everything listed below.

3 This designation is not used.

4 Write and everything listed below.

5 Read and everything listed below.

6 Execute only.

7 No access.

@ Number of Free Granules-How many free granules remain on the diskette.

@) Logical Record Length -Assigned when the file was created.

® Number of Records - How many logical records have been written.

® Number of Granules - How many granules have been used in that
particular file.

(J) Number of Extents- How many segments (contiguous blocks of up to 32
granules) of disk space are allocated to the file.

® End of File (EOF)-Shows the last byte number of the file.

® Creation Date-When the file was created. This column does not appear on
the directory of single-density diskettes.

DO
Begin Auto Command Input from a BUILD-File

44

oo filespec

filespec is the name of file created with eu1LD. If an extension is not
included, the file will automatically be given the extension 1eLD.

DOUBLE-DENSITY

This command reads and executes the lines stored in a special-format file
created with the BUILD command. The System executes the commands just as if
they had been typed in from the Keyboard.

Command lines in a BUILD file may include library commands or file
specifications for user programs.

When DO reaches the end of the automatic command input file, it returns control
to TRSDOS.

The DEBUG, DO and CLEAR command cannot be included in a BUILD file.

In addition to executing TRSDOS library commands, you can load and execute
user programs from a Do-file. You will probably want to make your program
name be the last line in the Do-file.

Examples

DO STARTER

TRSDOS will begin automatic command input from STARTER, after the operator
answers the Date and Time prompts.

AUTO DO STARTER

Whenever you start TRSDOS, it will begin automatic command input
from STARTER.

Sample Uses

Suppose you want to set up the following TRSDOS functions automatically
on start-up:

CLOCK (ON)
WP (DRI1,JE=0)
DUAL (ON)

Then use BUILD to create such a file. If you called it BEGIN, then use the
command: AUTO DO BEGIN to perform the commands each time TRSDOS
starts up.

45

----- ------- --------- ---

TRS-80 MODEL I DISK SYSTEM

DUAL
Duplicate Output to Video and Printer

DUAL (switch)

switch Is one of two options, ON or OFF. If switch is omitted, TRsoos uses OFF.

This command duplicates all video output to the Printer, and vice versa. It takes
effect immediately_

Notes:

• Video and printer output may be different because of intrinsic differences
between output devices and output software.

• Using the DUAL command will slow down the video output process.

• The printer should be ready when you execute the command.

Example
For a printed copy of all system/operator dialog. type: DUAL (ON l (ENTER)

To turn off the DUAL process. type: DUAL (OFF) (ENTER)

DUMP
Store a Machine Language Program Into
a Disk File

46

DUMP file (START= aaaa,END = bbbb, TRA = CCCC,RELO = dddd)

file is the file specification

START= aaaa is the start address of memory block. aaaa must be a four
digit hexadecimal number greater than or equal to x·saoo:

DOUBLE-DENSITY

END= bbbb is the end address of the memory block. bbbb must be a four
digit hexadecimal number and be greater than start.

TRA = cccc is the transfer address where execution starts when the program
is loaded. cccc must be a four-digit hexadecimal number. If this
option is omitted, the command will default to TRsoos re-entry.

RELO = dddd is the start address for relocating or loading the program back
into memory. dddd must be a four-digit hexadecimal number. If this
option is omitted, no relocation will take place.

Note: Addresses must be in hexadecimal form, without the x· · notation.
You must add the prefix "8" to any hex number which begins with a
letter.

This command copies a machine-language program from memory into a
program file. You can then load and execute the program at any time by entering
the file name in the TRSDos READY mode.

Examples
DUMP LISTER (START=7000,END=7100,TRA=7004)

Creates a program file named LISTERICMD containing the program in memory
locations x·1000· to x·1100·. When loaded, LISTER/CMD will occupy the same
addresses, and TRSDOS will protect memory beginning at x·1000·. The program is
executable for the TRSDOS READY mode.

DUMP PROG2 (START=7000,END=7F00,TRA=8010,RELO=8000)

Creates a program file named PROG2/CMD containing the program in addresses
x·1000· to X'7FOO', When loaded, PROG2/CMD will reside from X'8000' to X'8FOO'.

Execution will start at x·so10·.

ERASE
Erase File From Diskette

ERASE filename

filename is a rRsoos file specification.

47

!.. TRS-80 MODEL I DISK SYSTEM

---"
This command is similar to the KILL command in that it deletes a file from the
Directory, but it also clears (changes the bytes to zeros) the data area where the
file was stored. Using ERASE instead of KILL will insure that your file may not be
recovered.

Note: A file that has been ERASEd cannot be recovered by UNKILL, whereas a file
that has been killed may be recovered.

Example

ERASE TEST/BAS

Erases the filename TEST/BAS off the directory and clears that area of the diskette
where the file was stored.

(Also see KILL and UNKILL)

ERROR
Display Error Message

ERROR number

number Is a decimal number for a TRsoos error code.

This command displays a descriptive error message. For example, after
receiving the message, * * ERROR 11 * * you may respond with the
command: ERROR 11 (ENTER) and TRsoos will display the full error message.

For a complete list of error codes and messages, see the Technical Information
section of this manual.

FILFIX
Load and Modify Contents of File

FILFIX

48

----------------------~----·-·· "-----

DOUBLE-DENSITY

This command lets you load and modify the contents of a diskette file.

Type: FILFI>((ENTER)

TRSDOS will prompt: FILES PE C?

Enter the name of the file to be patched.

FILFIX will set up a full-screen display showing the first 256 bytes in the file.
You can "page" through the file using the GJ and (:=--J keys.

The display is similar to a full page display of DEBUG.

In this file-display mode, both hexadecimal and ASCII are given for each byte. If
a code has no displayable character, a period is shown in the ASCII area.

The display control commands are like those for the normal file-display mode:

CJ Next page ® Output to printer

(:=--J Previous page

To change the file contents, press 00. This puts you in a modify-memory mode
like the one previously described. Use the arrow keys to position the cursor,
then type in the correct contents as a hexadecimal value. When you are through
changing a page on the display, press (ENTER). The diskette file will be updated
and you will be returned to the file-display mode.

To cancel changes made, do not press (ENTER), press (BREAK). This will put you
back in the file-display mode without updating the diskette file. You may press
CJ then (:=--J to restore the page display to its actual contents.

To quit patching a file, press (BREAK) while in the file display mode and you will
be returned to TRSDOS READY.

FORMAT
Prepare a Data Diskette

FORMAT :d

:d specifies the disk drive which contains the diskette to be formatted.
II :dis omitted, TRsoos will prompt you for this Information.

This command lets you prepare data diskettes (either new or diskettes which
contain undesired data or programs), leaving a maximum amount of space for
your program and data files.

49

TRS-80 MODEL I DISK SYSTEM

Note: Data diskettes may only be used in Drives I, 2, and 3 except during
a BACKUP.

FORMAT takes a blank (new or magnetically erased) diskette, records track/sector
boundaries on it, then initializes it and creates a directory.

Example
Type:

FORMAT (ENTER)

to execute the FORMAT utility. If you did not specify a drive in the command
line, TRSDOS will display the message:

FORMAT WHICH DRIVE?

Type the drive number that contains the diskette to be formatted and press
(ENTER).

DISKETTE NAME?

The name serves as an internal label for the diskette. TRSDOS will default to
TRSDOS by simply pressing (ENTER). If another name is desired, type in any
appropriate name of one to eight letters and numbers, beginning with a letter.
Press (ENTER) at the end of that name.

MASTER PASSWORD?

The password may be from one to eight alphanumeric characters. The first
character must be alphabetic and you must press (ENTER). Pressing (ENTER)
without typing a password will default to PASSWORD.

TRSDOS will now display the message: ANALYZING DISKETTE During this
time TRSDOS checks to see if the diskette contains any files and if the diskette
is single or double density.

If the diskette is unformatted or formatted in single density, TRSDOS will
automatically begin formatting. If the diskette contains data, you will be asked:

DISK CONTAINS DATA, USE DISK OR NOT?

Type Y (Yes) and press (ENTER) if you do want to reformat, N (No) and press
(ENTER) if you want to save the disk information. You will be returned to
TRSDOS READY.

Notes: When formatting is complete TRSDOS READY will appear on the screen.

If CONFIG has been used to change the number of tracks on the diskette being
formatted, it will be formatted to have the number of tracks specified in CONFIG.

FORMAT will lock out any defective tracks to prevent data being lost in these
areas.

If you get READ errors during access, reformat the diskette.

50

FREE
Display Disk Allocation Map

FREE : d (PRT)

:dis the drive specification. If omitted, Drive O is used.

(PRT) tells rRsoos to send the map to the Printer.
If omitted, rRsoos sends the map to the Video Display only.

This command gives you a map of granule allocation on a double-density
diskette. (A granule, 768 bytes, is the unit of space allocation.) It also shows the
location of the directory and any flawed sectors.

When a diskette has been used extensively (file updates, files killed, extended,
etc.), files often become segmented (dispersed or fragmented). This slows the
access time, since the disk read/write mechanism must move back and forth
across the diskette to read and write to a file.

FREE helps you determine just how segmented your disk files are. If you decide
you'd like to re-organize a particular file to allow faster access, you can then
COPY it onto a relatively "clean" diskette.

Example
FREE

Displays a free space map of the diskette in Drive 0.

FREE (PRT)

Lists the free space for Drive O to the Printer.

FREE : 1 (PRTJ

Lists the Drive l map to the Printer.

51

TRS-80 MODEL I DISK SYSTEM

A Typical FREE Display
Four special symbols are used in the FREE map.

Unused Granule

Direct Directory Information

X Allocated Granule

Flawed Track Contains a Flawed Sector (Unusable)

A typical free map display is shown in Figure 7.

Disk Name
All six granules in
track 2 are allocated

The directory is located
on track 17.

Figure 7. Free Map.

HELP
Explanation of TRSDOS Command

52

HELP command

command is the specific TRsoos command or subject on which you need
help. II command is omitted or if an invalid subject is given, TRsoos
will list all available subjects.

--·····-------. ·-·· ·---·-·------------------

DOUBLE-DENSITY

Example

If you type in the following: HELP BACKUP (ENTER) TRSDOS will respond with
the syntax format, a definition of the command, and an explanation of
the abbreviation.

HELP COMMAND tells TRSDOS to display the syntax for the command.

If HELP * or HELP command * CfNTER) is used, the message will go to the printer
instead of the display.

Note: Typing HELP (ENTER) or specifying a command that does not exist in the
library will cause the HELP list to be displayed or printed.

KILL
Delete a File or Group of Files

Two syntaxes:

A) KILL fi/sspsc

8) KILL /ext:d
I ext is a file extension that must contain three characters.
:dis a drive specification. It must be provided.

This command deletes one file or a group of files from the directory,
depending on which form is used. Form A deletes the specified file. If no
drive specification is given, TRSDOS deletes the file from the first diskette that
contains it.

Form B deletes all files with a specified extension, regardless of the file name of
each file. A drive number must be included.

Note: A file that has been KILLed may be recovered by using UNKILL.

Examples

KILL TESTPROG/BAS

Deletes the named file from the first drive that contains it.

KILL JOBFILE/IDY,PASSWORD:1

Deletes the named file from Drive 1. The file has a password of PASSWORD.

53

TRS-80 MODEL I DISK SYSTEM

KILL /BAS:12!

Deletes from Drive O all files having the extension 1BAS.

(For more information. see ERASE.)

LIB
Display Library Commands

LIB (PRT)

(PRT) tells TRsoos to output to the Printer. PRT is optional; if omitted, output
is to the Video Display.

This command lists to the Display all the library commands. For help with a
command, use HELP.

Example

LIB

LIST
List Contents of a File

54

LIST fllespec 'PRT ,SLOW ,ASCII)

fllespec is a rnsoos file specification and must be specified.

PRT tells rnsoos to list to the Printer. If omitted, only the Video Display is
used.

SLOW tells rnsoos to pause briefly after each line. If omitted, the listing
is continuous.

ASCH tells TRsoos to list the file in Ascn format. If omitted, hexadecimal
format is used.

----------------- - .. ·----·-·

DOUBLE-DENSITY

This routine lists the contents of a file. The listing shows both the hexadecimal
contents and the ASCII characters corresponding to each value. For values
outside the range (x·20·. X"7F'l, a period is displayed.

Use the ASCII option for text files and BASIC programs saved with the A option.

Note: Only ASCII codes x·oo·-x·1F' are sent to the Printer. Bit 7 is always
set to 0.

During the listing, press~ to pause, (ENTER) to continue, or (BREAK) to exit.

Examples

LIST DATA/TXT (ASCII)

Lists the contents of DAT AITXT in ASCII format.

LIST FILE/A (SLOW)

Lists the contents of FILE/A, pausing after each line.

LIST PROGRAM/CMD (PRT)

Lists the file PROGRAM/CMD to the Printer.

LOAD
Load a Program File

LOAD filespec

filespec is a file specification that is created by the DUMP command.

This command loads a machine-language program file into memory. After the
file is loaded, TRSDOS returns to the TRSDOS READY mode.

You cannot use this command to load a BASIC program or any file created by
BASIC. See the BASIC Reference Manual for instructions on loading BASIC

programs.

Note: The file must load into RAM above x·s200. (X'5200-TOP).

Examples

LOAD PAYROLL/ PT 1

55

Sample Use

Often several program modules must be loaded into memory for use by a master
program. For example, suppose PAYROLL/PT! and PAYR0LL/PT2 are modules. and
MENU is the master program. Then you could use the commands:

LOAD PAYROLL/ PT 1

LOAD PAYROLL/ PT2

to get modules into memory. and then type: MENU to load and execute MENU.

LPC
Line Printer Control

LPC

The LPC utility program allows TRSD0S to ignore multiple carriage return
commands. Without LPC, a top-of-form <LPRINT CHR$(12)J command will add an
extra carriage return/line feed each time it is executed. Also, LPC masks the high
bit of each data byte. allowing you to send certain intercepted codes to the
printer. For instance. the BASIC statement LPRINT CHR$(140J will send code 140-
128 = 12 (LPRINT CHR$(12)) to the Printer.

The printers that require LPC are:

• Line Printer III (26-1156)
• Line Printer YI (26-1166)
• Daisy Wheel WP50 (26-1157)
• Qume Daisy Wheel (26-1157 A)
• Daisy Wheel II (26-1158)

and all future printers.

Printers that do not require LPC:

26-1150, 1152. 1153. 1154. 1159,andtheAversionofLPIII(26-1156A).

You must load the LPC program before you load an application program. The
easiest way to do this is to copy LPC onto your data/program diskette and then

56

- ---------------------------

DOUBLE-DENSITY

use the AUTO command to load LPC automatically each time you use the system.
For instance, type:

COPY LPC/CMD: 1 : l1l (ENTER)

Then, to make LPC an AUTO command on the diskette, type:

AUTO LPC/CMD (ENTER)

Whenever you use your program diskette, LPC will automatically load into
memory and you can use the program as usual. Since LPC has the extension
1CMD it is not necessary to type the extension when executing.

Note: LPC must be loaded before using SPOOL.

LPC locates into the highest available memory. There is no need to set MEMORY
SIZE to protect LPC. ULC resets itself in high memory. However, you still need
to set memory if required by your application program. LPC will be killed if the
CLEAR command is used.

Warning: Once the LPC utility program is loaded and installed, you should not
reload it except after a reset. Reloading- re-installs the program and uses up more
space each time!

MASTER
Set Master Read/Write Drive

MAffiR (

titll11:~1PtcifiQ1jo:. U omitted, Drive o is set as the master drive.

This command allows you to assign a specified drive as the Master Read or
Write drive in the system. When searching for a file, TRSDOS will start with the
master drive.

If the file is not found on the specified drive, TRsoos will continue searching on
the next higher-numbered drive. If the file is still not found, TRSDOS will return
to caller.

Example

After you enter the command: MASTER (DR I t.JE = 1) Drive I becomes the
master drive.

57

TRS-80 MODEL I DISK SYSTEM

MEMTEST
Test Memory

MEMTEST

This program tests your Model l's memory (read only and random access). In
TRSDOS READY, just type MEMTEST and press (ENTER).

The program automatically tests all memory locations. no matter what memory
size you have. First it checks read only memory; if everything is okay, it
automatically goes on and checks random access memory. If all RAM checks
out okay, the program continues. To return to TRsoos, you must reset.

If the program detects a ROM or RAM error, it will display a detailed message.
Repeat the test to make sure it is a valid error condition. Write the message
down and contact your nearest Radio Shack for assistance.

Note: MEMTEST changes the entire contents of RAM. Before running it, be sure
you have saved any valuable code you may have in RAM. Other checksums
include ROM A (B0781 and ROM c (4006).

PATCH
Change the Contents of a Disk File

58

Four syntaxes:

A) PATCH(EffilB)

This form will cause rnsoos to prompt you for all entries described
below.

B) PATCH programfile:d

This form will cause TRSoos to prompt you for all Information except
the filename.

C) PATCH programfi/e (A= nnnn,F = cc,c = dd)

This form is used for machine-language programs.
programfile is the file specification of the program to be changed.

DOUBLE-DENSITY

A= nnnn specifies the starting address at which the data is found.
nnnn is a four-digit hexadecimal number.

F = cc specifies the string you wish to find (or compare). cc may be a
hexadecimal sequence or a ASCII string enclosed in quotes.

c = dd specifies the new contents for the byte(s). dd may be either a
hexadecimal sequence or an ASCII string enclosed in quotes. The
change string must contain the same number of bytes as the
find string.

D) PATCH datafile (R= 88,B= bb,F= CC,C= dd)

This form is used for data files. (It can also be used for BASIC
programs.)

datallle is the file specification of the file to be changed.
R= aa specifies the record which contains the data to be changed,

and is a decimal number from 1 to 65535.
s= bb specifies the position of the first byte to be changed. It is a

decimal number from 1 to 256.
F= cc Is defined above.
c= dd is defined above.

This command lets you make minor corrections in any disk file, provided that:

1. You know the existing contents and location of the data you want to change.

2. You want to replace one string of code or data with another string of the
same length.

You can use PATCH to make minor changes to your own machine-language
programs; you won't have to change the source code, re-assemble it, and re
create the file. You can also use it to make minor changes in data files.

PATCH enables you to specify F (FIND) as an ASCII string such as "JOHN" and
replace it with a hexadecimal sequence (of same length) such as 4F48494F.

Another application for PATCH is to allow you to implement any modifications to
TRsoos that may be supplied by Radio Shack. That way, you do not have to
wait for a later release of the operating system.

Example

Using PATCH on a data file (including BASIC programs).

PATCH areas are specified in terms of the logical record which contains the data,
and the starting byte of the data in that record. (The TRsoos LIST command gives
this information.)

59

a... TRS-80 MODEL I DISK SYSTEM

iCr. ·-•,··~--~

'~ -·
For example suppose you need to change a 4-byte sequence in a file called
NAMEFILE. When you list the file, you find that the sequence is located in record
128, and that the sequence starts at byte 14. Write down the information like
this:

File to be changed

Record number
Starting Byte
Sequence of text to be changed
Replacement text

Then use the following command:

NAMEFILE

128
14
"JOHN"
4F48494F

PATCH NAMEFILE (R=128 ,B=14 ,F="JOHN" ,C=4F48484F)

or the command PATCH (ENTER), where TRSDOS would then ask what the filespec
is for the file to be patched, whether to patch an address or record, etc.

Note: The string you are changing must be entirely contained within the
specified record. If it spans two records, you will have to perform the patch
operations twice, once for each record.

The following command could be used to change a program file:

PATCH VREAD (A=5200,F=0CD2D25E5,C=000000008)

PAUSE
Pause Execution for Operator Action

PAUtE m,ssags , ,,c1- .

message is the message ,,;.;,._fayed d:11rlng tbe pa11se exee11Ujr/flis
is optional. If omllttfl,.PA.Uil! will lie dlspta,ed:.ay itself,· ·· ·.. .·. ·

This command is intended for use inside a DO file so TRSDOS can print a message
or reminder.

To continue after the pause, TRSDOS prompts you with the message:

PRESS <ENTER> TO CONTINUE

60

DOUBLE-DENSITY

Example

PAUSE INSERT DISKETTE #21

TRSDOS displays PAUSE, next the message and then prompts you to press (fNTE])
to continue execution.

PAUSE
PRESS <ENTER> TO CONTINUE

TRsoos displays PAUSE and then next prompts you to press (ENTER) to continue.
See BUILD and DO for sample uses.

PROT
Use or Change a Diskette's Master Password

PftOT :fl fPW,1:;0CK►

;dis an optional drive specification. If omitted, Drive O is used.

PW tells TRsoos you want to change the master password.

LOCK tells TRsoos to assign the master password to all unprotected user
mes. It omitted, the unprotected files remain unprotected.

PROT lets you use the master password to protect all unprotected files at once. or
to change the master password.

The master password will be needed to BACKUP the diskette, so be sure to
remember it!

Note: The master password on the TRSDOS factory-release diskette is PASS\VORD.

Examples
PROT :0 (PW)

Tells TRSDOS to change the master password on the Drive O diskette. TRsoos will
prompt you first for the old master password. then for the new master password.

PROT :1 (LOCK)

Tells TRSDOS to assign the master password to all unprotected user tiles. TRSDOS

will first prompt you for the master password.

61

TRS-80 MODEL I DISK SYSTEM

PURGE
Delete Files

PURGE :d (Ille-type)

:dis the drive which contains the disk to be purged. dis optional; if
omitted, Drive O is used.

file-type must be one of the following:

svs All system plus user files.
1Nv All invisible plus user tiles (No system files).
ALL All files on diskette except TRSDDS.
MtN All files except those necessary for minimal system diskette.

(If file-type Is omitted, TRsoos will list user files.)

This command allows quick deletion of files from a particular drive. When the
command is entered, TRSD0S will ask for the diskette 's master password.
(TRSDOS System diskettes are supplied with the password PASSWORD). After the
password is supplied, press (ENTER) and TRsoos will display filenames one at a
time, prompting you to kill, leave the file or to quit (return to TRSD0S).

PURGE * :d (file-type)

The asterisk (*) tells TRsoos to ask you if you want to delete the TRSDos System
files. These files are not shown on any of the directory listings and may be
deleted with this special form of purge. If you delete all of the files, the diskette
becomes a data diskette and may only be used in Drive I, 2, or 3.

The other parts of this command are as explained previously. However, be sure
to do the PURGE using Drive 1, 2 or 3, since the diskette will become "non
system'' during PURGE.

PURGE * :d (MIN)

This command allows you to purge all of a TRSD0S system except those
necessary for a minimal system diskette. User files will be listed at this time.
system and INvisible files must be purged using previous options. On a single
diskette system these systems (such as BASIC) must be purged prior to using the
MIN command.

A TRSD0S minimal system file includes TIO drivers, Error handler and four
TRSD0S vo calls ($OPEN, $!NIT, $CLOSE and $KILL). The library commands that are

62

DOUBLE-DENSITY

included are DIRectory, clear screen (cLs), blinking cursor (BLINK), TRACE,
CLOCK, and VERIFY.

CAUTION: If an attempt is made to use a non-available Library command. a
no system warning (0 NS) will appear on the screen. It may be in double
character size mode. Press (BREAK) or any key and control will be returned to
TRSDOS.

FILES LISTED (FILE-TYPE)
FOR PURGE DEFAULT (SYS) (INV) (ALL) *(XXX) *(MIN)

TRSDOS System Files
All Library Commands X
All Library Commands

(Except DIRectory) X
Error Handler X
Machine Language

Subroutines
($OPEN, $1NIT,

$CLOSE & $KILL) X
ULC (System, Invisible) X X
ULP (System, Invisible) X X
BASIC (System,

Invisible) X X
BASIC Overlays X X

LPG (Invisible) X X
MEMTEST (Invisible) X X
USER (Non-Invisible) X X X X X X

BASIC overlays can only be purged with (SYS) or (ALL) commands prior to
using (MIN).

Example
PURGE :1

TRSDOS will purge user files from Drive 1. This would include BASIC programs.

PURGE : 1 (INl.J)

TRsoos will purge all invisible files in Drive 1.

How to use the (MIN) TRSDOS System
Diskette to write BASIC programs

A minimum TRSDOS System diskette can be easily made with a single-disk drive
system and is very useful for writing BASIC programs that need a maximum of
disk space.

63

You must use one of your BACKUPS of the full System diskette to make a (MIN)
System diskette. For additional copies of (MIN) System diskette, use BACKUP. To
make the original diskette, use the PURGE command twice. First, purge from
your diskette all of the files. except TRSDOS. You may use the following
command:

PURGE :d (ALLI, or

PURGE * : d (ALLI (Your response must be N. when asked to delete System
file~.

All files, including BASIC may be PURGEd from the diskette. The remaining files
on the diskette are the TRSDOS System files. Type PURGE * : d (MIN)
followed by (ENT® will complete the minimum System diskette. Note: The
BASIC overlays arc not P!JRC,Ed when BASIC is deleted but are loaded with TRsoos
and will remain as part of the (MI!'-!) System.

A TRSDOS minimal system file includes 110 drivers, Error handler and four BASIC
overlays or TRsoos 110 calls ($OPEN, $!NIT. $CLOSE and $KILL). The Library
commands that are included are DIRectory. clear screen (cLs), blinking cursor
(BLINK), TRACE, CLOCK, and VERIFY.

To use this diskette, load BASIC into RAM using the full System diskette. Remove
the full System diskette from your drive and insert your (MIN) System diskette.
You can now use BASIC to write and save the programs on your (MIN) diskette. If
you exit BASIC, it must be reloaded from a full System disk. If you exit BASIC
before saving your program. you may be able to restore it by loading BASIC*
from the full System diskette. (Do not load a TRSDOS command or power-down
prior to using BASIC *).

If you have more than one disk Drive, you can insert the full System diskette in
Drive O and the (MIN) System diskette in another drive.

RELO
Change Where Program Loads into Memory

64

RELo filespec (ADD = aaaa)

ADD= aaaa specifies the new load address. aaaa is a four-digit hexadecimal
number referring to an address in the user memory. aaaa must be in
the user area of RAM.

DOUBLE-DENSITY

This command allows you to change the address at which a machine-language
program loads into memory. It does not change the program itself.

Note: This command may be useful in conjunction with DUMP.

Example

RELO PROGRAM/CM □ (ADD=G578l

TRSDOS will load the program PROGRAM;CMD at the new memory address
of 6578.

RENAME
Rename a File

RENAME oldname newname

oldname is the old file name.

newname Is the new file name.

The file name may include a drive specification and or password.

The new file name should not include a drive specification or password.

This command lets you rename a file or program. Only the name/extension is
changed; the password data in the file and its physical location on the diskette
are unaffected.

RENAME cannot be used to change a file's password protection. Use ATTRIB

to do that.

RENAME also checks to see that the intended new name does not duplicate a
filename currently on the same diskette. If it does, the command is cancelled
and an error message is displayed.

Examples

RENAME MATHPAK MATHPAK/BAS

Tells TRsoos to add the extension to the filename.

RENAME ABCDE/DAT ABCDEF/DAT

Tells TRsoos to change the filename only.

65

TRS-80 MODEL I DISK SYSTEM

RENAME PAYROLLl/TXT,GSR PAYROLL2/TXT

Tells TRsoos to change the filename; the password is retained automatically.

RENAME FILEl:3 FILE2

Tells TRsoos to change the filename of the file on Drive 3.

SETCOM
Set Up RS-232-C Communications

SETCOM (WORD= a,BAUD = b,STOP = C,PARITY = d,)

WORD= a is the number of bit/byte desired. a must be either 5, 6, 7, or 8,
depending on your needs. If omitted, the word length is not changed.

BAUD= b specifies the baud rate. b must be one of the following (110, 150,
300, 600, 1200, 2400, 4800, or 9600). If omitted, the baud rate is not
changed.

sroP = c specifies the number of stop bits. c must be either 1 or 2. If
omitted, stop bits are not changed.

PARITY= d determines whether the parity is odd, even, or none. d must be 3
(none), 1 (odd), or 2 (even). If omitted, parity is not changed.

Settings for SETCOM at Power-up and after Reset are BAUD= aoo, WORD= 1,

STOP= 1, and PARITY= EVEN. Typing SETCOM CEBIEB) will display the current
RS-232-C settings. Typing SET COM () CEBIEID will cancel all settings
and return to default values.

This command initializes RS-232 c communications via the serial channel,
providing that your Expansion Interface has a RS-232-C Serial Interface Board
(26-1145) installed. Before executing this command. you should connect the
communications device to the Model I.

Note: SETCOM is not a serial driver. It is simply a way to change the default
parameters of the RS-232-C.

Example

SETCOM (WORD=7 ,BAUD=31Z)IZ) ,STOP=1,PARITY=3)

This would set the RS 232-C to seven bit words. 300 baud. one stop bit. and
no parity.

66

------------. ······--------···

SETCOM

The command without specifications will display the current settings.

For further information. see the TRS-80 RS-232-C Interface Manual. (Catalog
Number 26-1145).

SPOOL
Turn Print Spooler On

A) SPOOL nnnn
nnnn- number of decimal bytes to use for the spool buffer. This

decimal length is subtracted from the current top of memory.

B) SPOOL, x'nnnn'
nnnn-hexadecimal address in memory. Spool buffer will use the memory

from nnnn to the top of memory.

C) SPOOL-with no option, turns SPOOL OFF.

This command increases the efficiency of the system by allowing you to use the
system while a printer operation is in progress. SPOOL (Simultaneous Peripheral
Operations On Line) does this by using the CPU "waif' times. (when the CPU
is idle. i.e., waiting for an input), to send information out to the buffer of the
Printer. This enables the CPU to continue processing, rather than wait until the
Printer operation is complete.

The information to be sent to the Printer is stored at the top of memory in a
special buffer set up by you when SPOOL is initialized. For example. SPOOi 1000H

sets aside 7000H bytes at the top of memory for the buffer. Thus instead of the
text being sent directly to the Printer (which ties up the CPU until the printing is
complete), SPOOL routes this information to its special buffer. Then. as regular
CPU and program operations continue. SPOOL will use the CPU"s idle periods to
send the information to the Printer.

When SPOOL is active. the end of memory is automatically changed for you so a
BASIC program will not interact with this memory. You may press (ENTERJ to the
prompt:

MEMORY SIZE?

because this memory is already protected by the system.

67

TRS-80 MODEL I DISK SYSTEM

SPOOL must be off before commands SPOOL aaaa or SPOOL X' bbbb' can be
entered or the message:

NO CHANGE MADE, SPOOL IS ALREADY ON,

will be displayed. In this case, tum SPOOL off by entering:

S POOL (.Bit.Efil

and the commands will be accepted. Use SPOOL (ENTER) to abort the SPOOLing of
text to the printer.

Note: SPOOL will work with the LPC (Line Printer Control) driver, but LPC
must be installed before the SPOOL command. See LPC in this manual for further
information. Turning SPOOL ·'off'' (see above paragraph) will also kill the LPC
driver.

Example

When TRSD0S READY is displayed, type: SPOOL 11Zl!21!21!21 (ENTER). This will
allocate the top 10,000 bytes of memory for the SPOOL buffer.

Now load and execute BASIC typing: BASIC (ENTER). Press (ENTER) for MEMORY
SIZE? and HOW MANY FILES?. Now run this program (be sure your Printer is
ready):

1!21 FOR X% = 1 TO 1!21!21!21
2!21 LPRINT "ABCDEFGHIJ";
3!21 NE>'.T ;-('X,

When the program ends, 10,000 characters have been sent to the printer. This
means that 10,000 characters have been stored up to be printed in a matter of a
few seconds.

Now exit BASIC with CMD'"s.·· Other TRSD0S LIBRARY commands (such as DIR)

may now be executed while the printing continues as a background task.

Note: Any continuous disk input/output such as FORMAT, BACKUP, or heavy file
access can completely stop printing. However, printing will resume as soon as
these disk operations are finished. Commands that use all of memory, such as
FORMAT, BACKUP, and COPY should not be used while the spooler is in operation.

68

DOUBLE-DENSITY

TAPE
Tape/Disk Transfer

TAPE (s = source,o = destination)

source and destination are abbreviations for the storage devices to
be used:

T Tape
o Disk
R Random access memory

Note: TAPE can only be used with machine-language programs. BASIC
programs must be CLOAOBd and CSAVEed.

This command transfers Z-80 machine-language programs from one storage
device to another. The following transfers are possible:

• Tape to disk

• Disk to tape

• Tape to RAM

Examples

TAPE (S=T ,D=D)

Starts a tape-to-disk transfer. TRsoos will prompt you DEl.JICE = TAPE TO
DI SK. TRsoos will then prompt you to press any key when the recorder is ready
to send information to the Computer (recorder should be in Play mode). When
you press a key, the tape will begin loading.

Note: If no asterisks flash, the recorder volume may need adjustment.

TRsoos will read the file name from the tape and use that name for the disk file
and append the extension CMD. It will copy the program to the first write
enabled diskette, starting with the master drive (see MASTER).

TAPE (S=D ,D=T)

Starts a disk-to-tape transfer. TRSDOS will prompt you

DEVICE= DISK TO TAPE - FILESPEC,,,,,

69

TRS-80 MODEL I DISK SYSTEM

Enter filespec and then it will tell you to press (ENTER) when the Cassette
Recorder is ready to record from the Computer.

TAPE (S=T ,D=R)

Starts a tape-to-RAM transfer. TRSDOS will prompt you TAPE INTO RAM. and
will tell you to press any key when the recorder is ready to send information
to the Computer's memory. After loading the program, TRsoos will begin
execution at the transfer address specified on the tape.

Note: Anytime the TAPE command is used, your machine-language program
must reside above 6FFF HEX if you wish to run the program.

TIME
Reset or Get the Time

TIME hh:mm:ss

hh:mm:ss specifies the hour hh, minute mm, and second ss.

Each must be a two-digit decimal number between the following ranges:
hh 0-23
mm 0-59
ss 0-59

If hh:mm:ss is given, TRsoos resets the time.

If hh:mm:ss is not given, TRsoos displays the current time.

This command lets you reset or display the time.

TIME uses a 24-hour clock. For example, 1:00 P.M. is displayed as 13:00.

TRsoos automatically updates the time using its built-in clock.

When you request the time, TRSDOS displays it in this format: 14: 15:31 for
2:15:31 P.M.

Example

TIME

Displays the current time.

70

DOUBLE-DENSITY

TIME 13:2121:IZIIZI

Resets the time to 13:20:00 P.M.

Note: If the clock is allowed to run past 23:59:59. it will re-cycle to zero, but
the date will not be incremented. The clock will continue to run.

See CLOCK and DATE.

TRACE
Dynamic Display of PC Register

TRACE (switch)

switch Is either ON or OFF. If switch is omitted, ON is used.

The TRACE command enables a foreground task which displays the contents
of your program instruction counter (PC Register) in the upper right of the
Video Display. The four-digit hexadecimal value will be updated every eight
milliseconds with the current background program's execution address. Since it
is a foreground task, TRACE operates at all times. To temporarily disable TRACE,

disable all interrupts (CMD·-r· in Disk BASIC). When interrupts are re-enabled
(CMD"R" in Disk BASIC), TRACE will start up again.

When used with the DEBUG program, TRACE can be very useful in debugging
machine-language programs, but it won't be of much use during BASIC program
execution.

Example

TRACE <ON)

Tums the TRACE feature ON.

TRACE (OFF l

Tums the TRACE feature OFF.

ULC
Upper Lower Case Driver
On start-up, TRsoos checks to see if the Lower Case Kit (26-1104) is installed.
If it is, TRsoos automatically loads and executes this driver. If the modification
is not present. the driver will not be loaded.

71

a .. ·. · ~. iii TRS-80 MODEL! DISK SYSTEM ijj-L~.
\~ --

No other drivers are necessary for the Lower Case Kit.

Note: This program cannot be user loaded. It may be loaded by TRSDOS only.

If the driver is not desired. simply kill the file on the diskette. ULC is not
password protected.

Note: ULC loads into highest available memory. There is no need to set MEMORY
SIZE?. ULC ""hides" itself. However. you must set MEMORY SIZE if required
by your application program.

UNKILL
Recover a KILLed File

UNKILL filespec :d

fi/espec:d is a file specification that includes a drive number.

This command recovers a file that was previously KILLed provided that:

• Filename has not been written over by a new filename. (i.e., if files have been
opened since the file was KILLed. UNKILL may not be able to recover the file).
If filename cannot be found because of this, ERROR 24 (file not found) will be
displayed.

• The diskette area where the file was stored has not been written over. If this
occurs, ERROR 33 (file unrecoverable) will be displayed.

When using UNKILL, if the filename was password protected, then the password
must be specified to recover the file.

Note: A file that was ERASEd cannot be recovered.

Example

UNKILL PAYROLL/DAT:1

Recovers file that has been previously KILLed. provided it has not been
written over.

72

DOUBLE-DENSITY

USER
User-Defined Library Command

USER command

command is a command you specify and must begin with an
alphabetic character. Only the first six characters will be
recognized and must be unique. If a new usER command is
defined, it will replace the previous command.

This command allows you to create one (and only one) library command. This
command will become a permanent feature of the TRSDOS diskette it is stored on
and will be displayed when you use LIB.

USER must be a machine-language routine created using DUMP/DEBUG or Editor/
Assembler. It must be saved using the filename LIB without any extension. The
program must not reside lower than s200H.

The User-Defined Library command is used just like TRSDOS Library
commands. Upon entering your program, HL register points to the next non
blank character on the command line and DE contains the end of memory. This
will enable you to pass options to your routine. If options are not specified, HL

will point to the (ENTER).

There are also some program security features such as:

• The program file LIB may be fully password protected. TRSDOS will override
these passwords to execute the routine, but this will allow you to protect LIB

from being listed.

• When the user library command is being executed. DEBUG will be disabled.
This will prevent access to the program through DEBUG.

• After execution of the users library command. when TRSDOS READY is
returned. all memory will be cleared, so the program will not remain in
memory.

To kill or delete the user-command from the library, type:

USER (ENTER)

Note: This does not kill the file.

73

TRS-80 MODEL I DISK SYSTEM

Example
In the following example, a Library command will be created. It will display a
simple message to the video and return to TRSDOS READY. This Library command
will be called MYPROG.

Using DEBUG, enter the machine-code and save it to diskette using DUMP:

Type:

DEBUG (ENTER)

and press (BREAK). You are now ready to use DEBUG.

Type:

M

DEBUG will prompt ADDRESS =

Type:

7000 (SPACEBAR)

Now enter the following machine-code without spaces between each pair.

21 09 70 CD G7 44 C3 2D 40 48 45 4C 4C 4F 0D

After entering all the code press (ENTER). Then press (ID to exit the DEBUG

monitor.

Type in the following command to save this program to the TRSDOS diskette in
Drive 0:

DUMP LIB (START=7000,END=7010,TRA=712)12)12))

Since DUMP adds the extension 1CMD to its file, we must rename LIBJCMD to LIB,

because USER will not accept the extension. Type the following to Rename the
file:

RENAME LIB/CMD to LIB (ENTER)

Now you are ready to make this new program part of the library commands in
TRSDOS.

Type in the following:

USER MYPROG (ENTER)

If you display the library commands (LIB), you will see MYPROG has been added
to the list. By typing MYPROG into the TRSDOS READY prompt, the program can
be executed.

74

DOUBLE-DENSITY

VERIFY
Verify Disk Writes

VERIFY (switch)

switch is either ON or OFF. swftch Is optional; if omitted msoos
uses ON.

This command causes TRSDOS to verify all user disk writes (for example, file
writes from Disk BASIC). This will be useful when you want to be sure that no
data is lost or altered during a disk write. For example, before you COPY a file,
you may want to enable VERIFY.

However, when VERIFY is ON, disk accesses are only about 50 percent as fast as
normal.

VERIFY does not affect system table and directory writes; they are always
verified.

Example
l,JERIFY (ON)

Tells the Computer to verify all disk writes.

l,JER I FY (OFF l

This disables the automatic read-after-write verification.

Note: VERIFY is ON when TRSDOS powers-up.

WP
Write-Protect Via Software

WP (DRIVE= d)

d specifies the disk drive to be protected. ff omitted, all drives will be
unprotected.

75

-------------·--······--···-···

TRS-80 MODEL I DISK SYSTEM

Diskettes can be protected from being overwritten. It is a software write-protect
rather than a hardware write-protect (such as the write-protect tab on the
diskette).

Only one drive may be protected at a time.

To unprotect a drive, making it accessible to writing, simply enter the command
WP without options or with a different drive number specified. The WP command
will not override a write-protect tab.

Examples
WP (DRil,1E=1)

TRSDOS will write-protect the disk in Drive 1.

WP

TRSDOS will eliminate write-protection on all drives.

76

DOUBLE-DENSITY

4 I Technical Information

Memory Organization
The TRS-80 Double-Density Disk Operating System is contained in IK of ROM

resident drivers and 6K of RAM drivers, schedulers, tables, pointers, etc. The
ROM resident drivers are also used by LEVEL II BASIC and, therefore, are part of
its 12K ROM requirement.

Since LEVEL II is upward compatible with Disk BASIC, an additional 0.5K of
RAM is required for both versions of BASIC. This means that user memory starts
at hex 5200, resulting in 11.5K of user RAM in a 16K machine.

Note: The memory which is completely untouched by both TRSDOS and Disk
BASIC begins at hex 7000.

TRSDOS is comprised of a resident system and several overlays which are loaded
from disk as the need arises (for example, to open or close a file).

Disk Organization
Each TRSDOS system diskette contains a TRSDOS system, a utility, command
library, and a file directory.

Each diskette is single-sided and has 35 or 40 tracks of information (See
CONFIG). Each track contains 18 sectors of 256 bytes.

Normally, data read/write operations may be initiated only at sector boundaries,
and must consist of exactly 256 bytes. However, TRSDOS allows the user to have
maximum flexibility with minimal effort by automatically blocking and de
blocking all file accesses to user-specified logical record lengths, even if this
requires ''spanning'' of two sectors.

The system disk file structure allows maximum use of disk file space by
automatically segmenting files across a diskette in several small pieces. These
pieces are correlated into one logically contiguous file by the system without
your needing to know the physical file location. This structure eliminates time
consuming disk-packing operations.

File Structure
A TRSDOS file is composed of one or more segments of storage space. Each
segment consists of from one to 32 physically contiguous granules of storage.
A granule is the minimum allocatable unit of storage, and consists of three
sectors (7 68 bytes).

77

-------------------·-------•+----~-~---· - - - -----------·---------

TRS-80 MODEL I DISK SYSTEM

Since a file is always lengthened by granules, a small amount of free storage is
generally present at the end of every file. This free storage allows minor file
additions to be made in space which is physically contiguous to the file.

Every time a disk file is extended (either initialized or lengthened), extra
granules may be allocated to that file, depending on the file's accumulated
length, diskette space, saturation, etc. These extra granules, along with all
granules after the one containing the file's EOF mark, are recovered and
returned to the system when the file is closed.

Units of Allocation
The minimum allocatable unit of storage is the "granule." A granule is defined
as three sectors (768 bytes). There are six granules per track.

Storage Capacity for User Files (Double-Density)

Tracks Granules Sectors Bytes

Full System Disk 35 114 342 87,552
40 144 432 110,592

TRSDOS Plus 35 120 360 92,160
BASIC 40 150 450 115,200

TRSDOS Only 35 128 384 98,304
40 158 474 121,344

MIN-TRSDOS 35 174 522 133,632
System 40 204 612 156,672

Data Disk 35 198 594 152,064
40 228 684 175,104

Methods of File Allocation
TRSDOS provides two ways to allocate disk space for file: Dynamic Allocation
and Pre-Allocation.

Dynamic Allocation

With Dynamic Allocation, the System allocates granules only at the time of
write. For example, when a file is first opened for output, space is not allocated.
The first space allocation is done at the first write. Additional space is added as
required by subsequent writes.

With dynamically allocated files, unused granules are de-allocated (recovered)
when the file is closed.

78

---- --------------

DOUBLE-DENSITY

Pre-Allocation

With Pre-Allocation, the file is allocated a specified number of granules when
it is created. Pre-Allocated files can only be created by the operator command
CREATE (See TRsoos section of this manual).

rnsoos will dynamically extend (enlarge) a Pre-Allocated file as needed for
subsequent write operation. TRSDOS will also de-allocate unused granules when
a pre-allocated file is opened for sequential writes, is written to and is closed.

Even though disk space may be availabl!-', disk-,fuJI errors may ocour;i:(yQJ:J
attempt to create_ more files than are available U:OOkiii F~inst(ttlc:e, ifJ b .. <
are available and you attempt to open 4 files, errors may occur. - - -- --- ---- f -- -

Physical and Logical Records in TRSDOS
A physical record is defined as one sector of a disk. One sector of a disk
contains 256 user data bytes. The artificial term ''granule'' is defined to be 3
sectors of disk space. There are 6 granules on each of the tracks on the disk. A
granule is the least amount of space allocated by TRSDOS. For programming
purposes, the physical records in a file are numbered from O to N. The largest
physical record number (N) in a file will then be three times the number of
granules allocated minus one ((3*G) - I). All TRsoos granule allocations are
made as needed at the time of a write, not when the file is created.

A logical record is defined by the user of TRSDOS. It may be anywhere from I to
256 bytes in length. Once a file is opened with a specific LRL (Logical Record
Length), the length is fixed until the file is closed.

Each opening of the file sets a single, fixed record-length. TRSDOS will "block"
logical records into (or from) one physical record for maximum space utilization
on the disk.

Blocking is putting more than one logical record into one physical record. For
instance. four 64-byte logical records will fit into one 256-byte physical record.
A logical record may be broken into two parts by TRSDOS in order to fill the last
portion of one physical record entirely before beginning to use the next physical
record (i.e. records are spanned). This occurs when the physical record length is
not an even multiple of the logical record length.

lf the user wishes to do his own blocking, he may specify a logical record length
of O bytes at the time of !NIT/OPEN and must himself manage the contents of the
physical record buffer area of 256 bytes. TRsoos will not move a logical record
for the user if LRL = O; in this particular case it will only read/write the physical
record to/from the buffer. Once control is shifted to your program, you will have
about 20 bytes of stack size left.

Spanning is spanning across sectors. If the record length is not an even divisor
of 256, the records will automatically be spanned across sectors. For example. if
the record length is 200, Sectors I and 2 will look like this:

79

----------------------- ------

g~ TRS-80 MODEL I DISK SYSTEM

·--------

A TRSDOS file

LRN1 I LRN2 LRN3 I LAN N I EOF
FILE: EXTENT 1 I EXTENT 2

EXTENT: GRANULE 1 GRANULE2 GRANULE32

GRANULE: SECTOR X SECTOR X + 1 SECTOR X + 2

SECTOR: '-------------_B_YT_E_1 ___.__B_Y_T_E_2_~_B_Y_T_E_3~I ... I BYTE 256

LRN: Logical Record Number. used to specify an individual, user-defined
logical record. Such a logical record is the smallest unit of
information which can be addressed during disk input/output (a
physical record is the unit which is actually read from or written to
disk).

File: A group of logical records; the largest unit of information which can
be addressed by a TRSDOS command.

Sector: A physical record. composed of 256 contiguous bytes.

Granule: The minimum allocatable unit of storage for any file.

Extent: One contiguous allocation of granules.

System Routines for Assembly-Language I/O
This information is provided for customers who wish to write their own
assembly level I/O routines. An explanation of the calling sequence and
parameters for each necessary vo routine is given. A knowledge of
Z-80 machine code is assumed.

The following notations are standard in this section:

(HL)= XXXX

A=xx

80

Registers HL contain the address of (point to) xxxx in machine
format. (If address of xxxx = J4Fl2H then the values in the
registers are: H = 34; L = B2). Other register pairs will also be
indicated this way.

Register A contains the numeric value of xx in binary form.
Register A is used to return the TRSDOS error code for vo calls.
A complete list of error codes and their meanings appears at
the end of this chapter. Other registers will also be indicated
this way.

Z=OK

x' nnnn'
or nnnnH

LRL

BUFFER

UREC

LSB/MSB

$name

Zero flag is set (OKJ if successful return from the system
routines.

Hard RAM address in hex notation (e.g .. 4020 is x·4020-).

Logical Record Length. 1-255 bytes only. You can define
records any length you wish up to 255 bytes maximum. A
length of zero is a special case for physical records only. and
indicates the LRL = 256 bytes.

256 user-designated bytes in RAM for TRSDOS to read sectors
from or write sectors into. If LRL = o. this area is the
responsibility of the user to manage before and after l!O. TRSDOS

manages this area if LRL is between I and 255 bytes. Do not
alter this area when using logical record processing.

(User Record) The address of the contiguous RAM byte-string
assigned by the user as his logical record area. Its length must
be equal to LRL. It is <! different area from BUFFER.

Least-significant byte followed by most significant byte. This is
the standard Z-80 format for addresses.

The "$" is prefixed to all system locations and call routines. so
they will not be confused with TRSDOS commands or utilities.
For example. $OPEN.

DCB before $OPEN and after $CLOSE

The DCB (device control block) is defined as 32 contiguous bytes of RAM

designated by the user. Before $OPEN and after SCLOSE, it is a left-justified,
compressed (no spaces) ASCII string, as in a standard TRSDOS filespec. The string
is terminated with a carriage return.

8 16

Notes: /ext, .password, and :d are optional.
$ stands for a carriage return (X'OD')

Explanation of DCB while OPEN:

lsblmsb is least significant byte followed by most significant byte in Z80 RAM

format (i.e. addr= 7CC8 in RAM is CS 7C).

24

81

------------- - ----------

TRS-80 MODEL I DISK SYSTEM

Address Length Explanation

DCB+0 3 Reserved
+3 2 Physical Buffer address (lsb/msb)
+5 1 Offset to delimiter at end of current record (ODECR)
+6 1 File drive number residence
+7 1 Reserved
+8 1 EOF offset of last delimiter in last physical record
+9 1 LRL (logical record length)

+10 2 NAN (next record no. -open sets = X'0000' - lsb/msb)
+12 2 ERN (ending record no. -(last in file)- lsb/msb)
+14 18 Reserved

NRN Next Record Number defines which record is to be read or written by the
next system call for READ or WRITE. It is automatically incremented by one after
each system call. In order to process random files, use the POSN call to direct
TRsoos to the record you wish to transfer next.

ERN Ending Record Number is the last record number currently in the file. It
is put into the directory at CLOSE time, so if it is expected to be correct, the user
must close his files after adding records to a file. This value may also be used to
position to end of file so that new records may be added to the end of the file. To
position to the end of file use a call to POSN with a record number of ERN + I.
POSN is described later.

Fundamental TRSDOS 1/0 Calls
There are 20 fundamental TRsoos routines involved in handling file vo.
These are:

$BKSPC
$CLOSE
$DIVIDE
$DMULT
$DOSABRT
$FILPTR
$!NIT
$KILL
$OPEN
$POSEOF

$POSN
$PRUNE
$PUTEXT
$RAMDIR
$READ
$REWIND
$SYNTAX
$VDLINE
$VERF
$WRITE

The detailed calling sequences and discussions for each of these routines follow.
Note that all of these system calls use register F and do not restore its value
before return. In order to apply this data properly, you should read through all of
these descriptions and clear up all of the points that are not obvious to you by
using other reference materials. If you are successful in doing this you will find
that TRSDOS is a workable tool for your programming ideas.

82

..---:--_

DOUBLE-DENSITY

$INIT-17440/X'4420'
SINIT is provided as an entry point to TRSDOS which will create a new file entry
in the directory and open the DCB for this file. SIN IT scans the directory for the
filespec name given in the DCB. If the filespec name is found, SINIT simply opens
the file for use. If the name is not found, a new file is created with the filespec
name.

Entry Conditions

(HLl = BUFFER (see beginning of this section for notation)
(DE) = DCB

B = LRL

CALL $!NIT

Exit Conditions

IY = changed
Z = OK

c carry flag is ON if a new file was created
A = TRSDos error code. (Error codes listed at end of this chapter)

$OPEN-17444/X'4424'
$OPEN provides a way to open the DCB of a file which already exists in the
directory. The DCB must contain the filespec of the file to be opened before entry
to SO PEN. The file will be opened using the LRL from the directory and ignore
what the user supplies (Register B). In other words, the file will be opened as
it is created.

Entry Conditions

(HL) = BUFFER

(DE) = DCB

B = LRL

CALL $OPEN

Exit Conditions

Z = OK

z = 0 if file does not exist.
A = TRSDOS error code.
IY = changed

83

-------- -----------------------------

TRS-80 MODEL I DISK SYSTEM

$POSN-17474/X'4442'
sPos:--; positions a file to read or write a randomly selected logical record. Since
it deals with logical records. the proper computation is done to locate which
physical record(s) contain the data. Following a SPOSN with a $READ or $WRITE

will transfer the record to/from RAM.

Note that positioning to logical record zero sets the file to read the first logical
record in the file. To position to end of file in order to add new records onto the
end. use the record number ERN + 1.

Entry Conditions

1DEl = DCB (must have been opened previously)
BC = Logical record number to position for.
CALL SPOSN

Exit Conditions

Z = OK

A = TRSDOS error code.

$READ-17462/X'4436'
If LRL not equal to zero. then $READ transfers the logical record whose number
was placed in the DCB by 'f;POSN into the RAM area addressed as UREC. The value
of LRL is defined at open time. The record comes from "BUFFER" defined at
open time. If TRSDOS must read a new physical record to satisfy the request, it
will do so. "Spanned" logical records will be re-assembled as necessary. SREAD

will automatically increment in the DCB the offset to delimiter at end of current
record (ODECR) by the value of LRL for each logical record and NRN by one for
each physical record after each transfer is completed. $INIT/$OPEN will set NRN

= x·oooo and ODECR = x·oo in order to read the first record with the first $READ.

If LRL = o. SREAD transfers one physical record into BUFFER. defined at open
time. from the disk file. Registers HL are ignored. $READ increments NRN

as above.

Entry Conditions

(HLl = l'REC if LRL is not zero. Unused if LRL = 0.

(DE) = DCB

CALL SREAD

84

Exit Conditions

Z = OK

A= TRSDOS error code. (EOF=x·1c or X'lD')

(see errors 28,29 for EOF or NRF)

$WRITE-17465/X'4439'

DOUBLE-DENSITY

If LRL not equal to zero, then $WRITE transfers the one logical record from the
RAM area addressed by UREC with the length LRL as defined at open time. The
record goes into the "BUFFER" which was defined at open time. If TRSDOS must
write a physical record in order to satisfy the request, it will do so. "Spanning"'
will be handled by TRSDOS as necessary. At $INIT1$OPEN time the DCB value of
NRN = x·oooo and the offset to delimiter at end of current record (ODECR) =

x·oo so the first record can be written. After each logical record is transferred,
the ODECR value in the DCB will be incremented by the value of LRL. After each
physical record is transferred, the NRN value in the DCB will be incremented by
one.

If LRL = o, $WRITE transfers one physical record from BUFFER into the disk file
using the NRN in the DCB. BUFFER is defined at $INIT!OPEN time only. The DCB

value NRN is updated as above, after the WRITE.

Entry Conditions

<HU = UREC if LRL is not zero. Unused if LRL = o

(DE)= DCB

CALL $WRITE

Exit Conditions

Z = OK

A = TRSDOS error code.

$VERF-17468/X'443C'
The only difference between $VERF and $WRITE is that SVERF writes one physical
record to disk and then reads it back into a special TRSDOS RAM area not defined
by the user. This special area and the original write buffer are then compared
byte by byte to assure that the record was successfully written.

85

------------------------- -------------------------------- -

TRS-80 MODEL I DISK SYSTEM

Entry Conditions

(HU = Same as $WRITE above.
(DE) = DCB

CALL $VERF

Exit Conditions

Z = OK

A = TRSDOS error code.

$PUTEXT-17523/X'4473'
This routine will add an extension to a filename if an extension does not already
exist. An extension to a filename may be useful for identifying the type of data
in the file.

Entry Conditions

(DE) = DCB

(HU = The extension to be added to the file
CALLSPUTEXT

Exit Conditions

None

$BKSPC-17477/X'4445'
This routine positions the file record pointer to the previous record.

Entry Conditions

(DEl = DCB

CALL SBKSPC

Exit Conditions

z = Valid position
NZ = Invalid position in file

86

-·-------"--·---

DOUBLE-DENSITY

$REWIND-17471/X'443F'
Point to the beginning of the file. This routine positions the file pointer to the
first record in the tile. This is useful when the same file must be processed more
than once.

Entry Conditions

(DE)= DCB

CALL $REWIND

Exit Conditions

z = Good file specification
NZ = Bad tile specification

$POSEOF-17480/X'4448'
Point to the end of tile. This routine positions the file pointer to the last record in
the file. This may be used to extend a sequential access file.

Entry Conditions

{DE) = DCB

CALL $POSEOF

Exit Conditions

z = Good file specification
NZ = Bad tile specification

$SYNTAX-17436/X'441C'
Move a file specification to DCB. This routine takes a file specification and
checks it for validity and moves it to a DCB so that the tile may be opened.

Entry Conditions

(HLI = Filename
(DEJ = DCB

CALL $SYNTAX

87

D111 TRS-80 MODEL I DISK SYSTEM

----·---

Exit Conditions

z = Good file specification
'.\Z = Bad file specification

$D IVIDE-17 486/X' 444E'
The divide routine takes a 16-bit dividend and an eight-bit divisor. After
division, the quotient replaces the 16-bit dividend and the remainder replaces
the eight-bit divisor.

Entry Conditions

HL = Dividend
A = Divisor
CALL :l,DI\'IDE

Exit Conditions

HL = Quotient
A = Remainder (0 indicates no remainder).

$DMULT-17483/X'444B'
The multiply routine uses a 16-bit multiplicand and an eight-bit multiplier. After
multiplication takes place, the product replaces the 16-bit multiplicand.

Entry Conditions

HL = Multiplicand
A = Multiplier
CALL 'tDMULT

Exit Conditions

H = High order byte
L = Middle order byte
A = Low order byte

H L

High Middle

88

A

Low

DOUBLE-DENSITY

$RAMDIR-17550/X'448E'
This routine allows you to examine a diskette directory (one entry or the entire
directory) or the diskette's free space. The information is written into a user
specified RAM buffer.

Only non-system files will be included in the RAM directory.

Entry Conditions

HL = RAM Buffer. lfc=0, size= 2817 [max #*22+ l]. Ifc= I to 128.
size = 22. If c = 255. size = 64.

B = Specified drive number
c = Function switch:

Contents of C

0

1-128

255

CALL SRAMDIR

Results

Gets entire directory into RAM. (See RAM Directory Format).

Gets one specified directory record into RAM, if it exists. (See
RAM Directory Format).

Gets free-space information (See RAM Directory Format).

Exit Conditions

NZ = Error occurred.
z = No error. (HLJ = directory or free-space information.

RAM Directory Format

The directory is made up of records, one per file. All values are hexadecimal.
Each record placed in user RAM is in the following format:

Byte Number

0-13
14
15

16

17

18-19

20-21

22

Contents

filenamelext:d (left-justified followed by spaces)
Reserved for future use
Protection Level. binary 0-6

Byte EOF, binary 0-255

Logical record length, 6inary 0-255

Last sector number in file, binary LSB, MSB

Number of Granules allocated <LSB.MSBJ binary
After last record of directory (or single record).

" + " (marks the end of directory list after entire directory.)

89

TRS-80 MODEL I DISK SYSTEM

Free Space

HL = address of four bytes containing:
I) the number of granules used
2) the number of free granules

The information appears in the following form:

I 2 3 4
LSB MSB LSFl MSB

grans. # grans.
used free

62 00 8E 00

$FILPTR-17547/X'448B'
This routine provides information on any user file that is currently open. It
enables you to obtain the drive number and the logical file number for any file
and should be used in conjunction with $RAMDIR.

Entry Condition

(DEJ = Data Control Block (DCB) defined when file was opened.
CALL $FILPTR

Exit Conditions

NZ = Error occurred.
z = No error. The following registers are set up:
B = Which drive contains the file (0.1,2, or 3).
c = Logical file number (1-128)

Note: This operates with user files only.

$CLOSE-17448/X'4428'
$CLOSE closes a file from the last processing done. It is very important to do
a $CLOSE on every .file opened before the program ends. lf you do not close
a file. the directory entry for this file is incorrect if any new records have been
written into the file. Other cases are not given here, but it is very important to
TRSDOS that all of the ·'housekeeping'' be complete for file management.

90

----------------------- ··---···--······

Entry Conditions

(DE) = DCB

CALL $CLOSE

Exit Conditions

Z = OK

A = TRSDOS error code.

$KILL-17452/X'442C'

DOUBLE-DENSITY

$KILL deletes the directory entry for a file and releases the disk storage. The file
must be open.

Entry Conditions

(DE) = DCB

CALL SKILL

Exit Conditions

Z = OK

A = TRSDOS error code.

$DOSABRT-16432/X'4030'
This routine displays the message: 0 PER AT I ON ABORTED, then transfers control
to TRSDOS READY.

Entry Conditions

CALL$DOSABRT

Exit Conditions

None

$PRLINE-17514/X'446A'
This subroutine prints a line to the Printer. The line must be terminated with an
ASCII ETX (X'03') or a carriage return (X'OD'). If the terminator is a carriage
return, it will be printed; if it is an ETX, it will not be printed. This allows
PRUNE to position print to the beginning of the next line or leave it at the
position after the last text character.

91

--------------···--·····--·· -•--·····

a~ TRS-80 MODEL I DISK SYSTEM

~ .---·

Entry Conditions

1HLl = Output text. terminated by X'03' or X'OD'
CALI. SPRL!;\JE

Exit Conditions

1HL1 = the terminator
DE is altered

$VDLINE-1751VX'4467'
This routine displays a line. The line must be terminated with an ASCII ETX

(X'03') or carriage return (X'OD"). If the terminator is a carriage return, it will
be printed; if it is an ETX, it will not be printed. This allows VDLINE to position
the cursor to the beginning of the next line or leave it at the position after the
last text character.

Entry Conditions

1HL1 = Output text, terminated by X'03' or X'OD.'
CALL SYDLINE

Exit Conditions

(HU = the terminator
DE is altered.

Additional Routines and Storage Addresses

$JP2DOS-16429/X' 402D'
This routine transfers control to TRSDOS READY.

Entry Conditions

JP $JP2DOS

Exit Conditions

None

92

-------·--····· ···-·------------------

$DATE-17520/X'4470'
$TIME-17517/X'446D'

DOUBLE-DENSITY

These routines return the date and time in ASCII format:

Date: MM;DD/YY

Time: HHMM/SS

Entry Conditions

(HL) = Eight-byte buffer to receive the date/time text
CALL$DATE

CALL $TIME

Exit Conditions

(HLl = Date or time text

$DATLOC-16452/X'4044'
$TIMLOC-16449/X'4041'
These locations store the date and time in binary format:

SDATLOC (Three bytes): MM DD YY

HIMLOC (Three bytes): ss MM HH

$ERRDSP-17417/X'4409'
This routine displays a TRSDOS error message determined by the contents of the
accumulator (A). This register contains an error code (0 = no error) after
completion of any system routine.

Entry Conditions

A = TRSDOS error code (see Table at the end of this section). In a TRsoos error
code, bits 6 and 7 are normally reset (oft). So SERRDSP interprets them as
controls.

Bit#

7

6

CALL $ERRDSP

Set

Return to caller upon
completion

Give detailed error message

Not Set (Normal
Condition)

Return to TRSDOS upon
completion

Give error number only

93

-------- ------···-···

TRS-80 MODEL I DISK SYSTEM

Exit Conditions
None

Sample Use

CALL $SYSRTN ; ANY SYSTEM ROUTINE
JR Z ,OKGO ; CHECK FOR ERROR

THE FOLLOWING INSTRUCTION SETS BIT G (DETAILED
ERROR MESSAGE) AND BIT 7 (RETURN TO CALLER AFTER
DISPLAYING MESSAGE

OR C0H ; BINARY 11000000
CALL $ERRDSP ; NOW CALL ERROR DISPLAY

CONTINUE HERE UPON RETURN FROM ERROR DISPLAY
YOUR ERROR HANDLER MAY GO HERE

OKGO ;CONTINUATION AFTER $SYSRTN WITH NO ERROR

$DSPDIR-17577/X'44A9'
This command displays the directory listing of non-protected visible double
density files in the specified drive.

Entry Conditions
(X"442B"l = ASCII-coded drive number "O," "I," "2," or "3"
CALL $DSPDIR

Exit Conditions
All registers are changed.

$COMDOS-17553/X'4491'
This routine executes a TRSDOS command and returns to TRSDOS READY.

Entry Conditions
(HLl = Text of TRSDOS command. terminated by x·oo ·
JP $COM DOS

94

- --- ------------------------- -----------------------

DOUBLE-DENSITY

Exit Conditions

None

$CMDDOS-17556/X'4494'
This routine executes a TRSDOS command and returns to the caller.

Entry Conditions

(HLJ = Text of TRSDOS command, terminated by x·oD.'

CALL $CMDDOS

Exit Conditions

All registers are changed.

Caution: TRSDOS commands will overlay RAM up to X'6FFF.'

$CMDTXT-17626/X' 44DA'
This is the start address of a buffer containing the last command line entered
under TRSDOS READY. Using this buffer, your program may recover parameters
that were included in the last command line.

For example, given a program named EDITOR/CMD, we want the operator to
select an input file name when the program is loaded and executed from
TRSDOS READY:

TRSDOS READY

EDITOR MYFILE

The program, EDITOR, can recover the name of the file in the $CMDTXT buffer.

Note: On entry to a program, <HLJ = First non-blank character following the
program name.

$MEMEND-16457/X'4049'
This storage location contains the highest address available. It is normally the
same as the physical end of RAM, but you may change it for special purposes.

The address is in LSB, MSB sequence.

95

a~. TRS-80 MODEL I DISK SYSTEM

~ ' __ ,;,----~-~. -·
TRSDOS Error Codes/Messages

1 CRC Error During Disk 110 Diskette contains bad data or diskette had trouble
during the input'output self-check. (cRc stands for Cyclic Redundancy Check.)

2 Disk Drive Not in System You are attempting to access a disk drive that is not
installed in your System.

3 Lost Data During Disk 110 An input/output program has occurred and data has
been lost because of a problem with the Computer. Have your Computer
checked; clean the heads on the disk drives.

4 cRc Error During Disk 110 Diskette contains bad data or diskette had trouble
during intput/output self-check. (CRC stands for Cyclic Redundancy Check.)

5 Diskette Sector Not Found The Computer cannot find recognizable data on
the specified diskette. Reformat the diskette.

6 Disk Drive Hardware Fault Not used for Model I double-density. (Note: This
error, even though not used, is listed in the directory.)

7 File Already in Directory A file with the same filename already exists on the
specified diskette's directory.

8 Disk Drive Not Ready You are attempting to access a disk drive that is not
ready for input/output. Probable causes: Drive not connected to System or disk
drive's door is open.

9 Illegal 110 Attempt Not used for Model I double-density. (Note: This error, even
though not used, is listed in the directory.)

10 Required Command Parameter Not Found The Computer must have addi
tional required information to perform the specified input/output function.

11 Illegal Command Parameter You are attempting to use an unrecognized com
mand parameter.

12 Time Out on Disk Drive Not used for Model I double-density. (Note: This error,
even though not used, is listed in the directory.)

13 110 Attempt to Non-System Disk You are attempting to access a diskette that
has not been formatted as a double-density diskette.

14 Write Fault on Disk 110 An input problem has occurred because of a problem
with the Computer. Check Computer; clean the heads on the disk drives.

15 Write-Protected Disk You are attempting to store information on a diskette that
is write-protected.

96

DOUBLE-DENSITY

16 Illegal Logical File Number You are attempting to input a file number that is
greater than the number of files the directory can hold. Use another diskette.

17 Directory Read Error A diskette 1,0 error occurs as the Computer attempts to
read the diskette's directory.

18 Directory Write Error A diskette 1,0 error occurs as the Computer attempts to
write to the diskette's directory.

19 Invalid Filename The file specification does not conform to the syntax rules for
valid file specification.

20 GAT Read Error Diskette output error during attempt to Read double-density
system information from directory track. (GAT stands for Granule Allocation
Table which is located on the directory.)

21 GAT Write Error Diskette input error during attempt to Write double-density sys
tem information onto directory track. (GAT stands for Granule Allocation Table
which is located on the directory.)

22 HIT Read Error Diskette output error during attempt to Read double-density sys
tem information from directory track. (HIT stands for Hash Index Table which is
located on the directory.)

23 HIT Write Error Diskette input error during attempt to Write double-density sys
tem information onto directory track. (HIT stands for Hash Index Table which is
located on the directory.)

24 File Not Found Reference was made in a LOAD, KILL or OPEN statement to a file
which did not exist on the specified diskette.

25 File Access Denied You are attempting to access a file with the incorrect pass
word (or you're using no password at all). To acces the file, specify the correct
password.

26 Directory Space Full All directory storage space on the diskette has been
used.

97

!!o- TRS-80 MODEL I DISK SYSTEM

27 Disk Space Full All storage space on the diskette has been used. KILL un
needed files or use a formatted, non-full diskette.

28 Attempt to Read Past EOF You are attempting to read past the end of file.

29 Attempt to Read Outside of File Limits You are attempting to put more data
in the file than the file can hold.

30 No More Extents Available Not used for Model I double-density. (Note: This
error, even though not used. is listed in the directory.)

31 Program Not Found The Computer cannot find the specified program.

32 Invalid Drive Number You have specified an incorrect diskette drive number.

33 File Unrecoverable This error is called "unkill" error because you are attempt-
ing to access a file that is no longer recoverable since the previously allocated
space for this file has now been written to.

34 Attempt to Use Non-Program File as a Program You have entered an illegal
program format or bad load memory address.

35 Memory Fault During Program Load Data is being loaded into a bad load
memory address or being loaded to non-existing RAM.

36 **Undefined Error** Reserved for future use.

37 Improper Density Diskette You are attempting to use a single-density diskette
in your double-density system.

38 110 Attempt to Unopen File You are attempting to read or write to a file that is
not Opened.

39 Invalid Command Parameter You are attempting to use a library command
that has wrong parameters for one of the library's options.

40 Attempt to Open File Already Open An attempt was made to Open a file that
was already Open. This error is also output if a KILL statement is given for an
Open file.

98

DOUBLE-DENSITY

ROM Subroutines
The Level II BASIC ROM contains many subroutines that can be called by a Z-80
program: many of these can be called by a BASIC program via the USR function.
Each subroutine will be described in the format given below.

1. $NAME- Entry Address

2. Function Summary

3. Description of Function

4. Entry Conditions

5. Exit Conditions

6. Sample Program

Notes:

1. The subroutine name is only for convenient reference. It is not recognized by
the Computer. The $- prefix reminds you that it is a convenience name only.

The entry address is given in decimal/hexadecimal form. (The hexadecimal
address will be given in this form: X'OOOO.') This is the address you use in
a z-so CALL. BASIC programmers store this address in the USR definition address
(16526-16527).

4, 5. Entry and exit conditions are given for Z-80 programs. If a Z-80 register is
not mentioned here, then you can assume it is unchanged by the subroutine.

6. Sample Program fragments are given in z-so Assembly Language and, where
appropriate, in BASIC.

Here are the subroutines, arranged according to function. In the following
pages, they are arranged alphabetically.

System Control

$DELAY

$JNITIO

$READY

$RESET

Delay for a specified interval
Initialize all vo Drivers
Jump to Level II "Ready"
Reset Computer

99

'1r. TRS-80 MODEL I DISK SYSTEM

'·~-
.. ~

Cassette 1/0

$ASTBLK

$CASSON

$CSHIN

$CSHWR

$CSJ'-I

$CSOFF

$CSOUT

Keyboard Input

SKBCHAR

SK BLINE

$KBWAIT

Printer Output

$PRCHAR

Blinks asterisk in upper-right corner of video
Turn on cassette drive
Search for leader and sync byte
Write leader and sync byte
Input a byte
Turn off cassette drive
Write a byte to cassette

Get a character if available
Wait for a line
Wait for a character

Print a character

Video Display Output

$VDCHAR

$VDCLS

Display a character
Clear the screen

$ASTBLK-556/X'022C'
When called, this subroutine causes the asterisks in the upper-right corner to
blink. The blinking asterisks indicate a "'good" load from cassette.

Entry Conditions

Reg. A is destroyed.

Exit Conditions

None

$CASSON-530/X'0212'
This subroutine is used to turn on the cassette drive before reading from or
writing to the cassette.

Entry Conditions
A = Binary-coded cassette drive numbers

100

0 = cassette drive # 1
I = cassette drive #2

Exit Conditions

None

Note: For Z-80 sample program, see $CS HIN.

$CSHIN-662/X'0296'

DOUBLE-DENSITY

Search for Cassette Header and Sync Byte

Each cassette "record" begins with a header consisting of a leader sequence,
synchronization byte and displays two asterisks in the upper-right corner of the
video. $CSHIN begins searching for this header information. The subroutine
returns to the calling program after the sync-byte has been read.

Entry Conditions

None

Exit Conditions

A is altered. All other registers are unchanged.

Sample Z-80 Programming

The following program reads the tape created by the $CSHWR sample program.

ill 1 cg ill Ill 1 Ill Ill t.JDCLS EOU Ill 1 C9H ; t.JDCLS ADDRESS
11)11)33 Ill Ill 11 Ill l,JDCHAR EOU llllll33H ; 1.JDCHAR ADDRESS
4467 11)11) 1211) 1•1DLINE EOU 4467H ; t.JDLI NE TRSDOS ADDRESS
11)212 11)11) 1311) CASSON EOU lll212H ;CASSON ADDRESS
11)11)49 11)11) 1411) KBWAIT EOU llllll49H ;KBWAIT ADDRESS
11)296 11)11) 1511) CSHIN EOU lll29GH ;csHIN ADDRESS
11)235 llllll 1 GIil CSIN EOU lll235H ;csrN ADDRESS
411l2D 11)11) 1 711) JP2DOS EOU 411l2DH ;JUMP TO DOS ADDRESS
Ill 1 FB 11)11) 1811) CSOFF EOU lll-1FSH ;csoFF ADDRESS

11)11) 1911) ;READ A MESSAGE FROM TAPE I',, STOP ON CAR-RET'N
811)11)11) llllll211llll ORG 811lllllllH
811)11)11) CDC911l 1 llllllZ 1 Ill CALL 1.JDCLS iCLEAR SCREEN
811)11)3 3ElllD llllllZZlll LD A ,lllDH
811)11)5 CD3311llll 11)11)2311) CALL t,JDCHAR ;SKIP A LINE
811)11)8 2131811) 11)11)2411) LD HL ,MSGlll ; (HL) =CASSETTE PROMPT

- --------~-~~-----------

101

TRS-80 MODEL I DISK SYSTEM

800B CD6744 00250 CALL t.JDL I NE
800E CD4800 00260 CALL KBWAIT iWAIT FOR ANY KEY
8011 215880 00270 LD HL I n<T i(HU=256 BYTE BUFFER
8014 F3 00280 DI iDISABLE I NTERUPTS
8015 CD 1202 00280 CALL CASSON iTURN ON CASSETTE PLAYER
8018 CD8G02 00300 CALL CSHIN iFIND START OF RECORD
8015 CD3502 00310 LOOP CALL CSIN iINPUT A BYTE
801 E 77 00320 LO (HL) ,A iSTORE IT
801 F 23 00330 INC HL iPOINT TO NE>(T LOC,
8020 FE0D 00340 CP 0DH iWAS LAST BYTE=CAR RET'N
8022 20F7 00350 JR NZ,LOOP iI F NOT I GET NE>(T BYTE
8024 CDF801 00360 CALL CSOFFF i IF YES, TURN OFF CASSETTE
8027 FB 00370 EI iENABLE INTERUPTS
8028 215880 00380 LD HL I T><T iDISPLAY THE MESSAGE
802B CD6744 00380 CALL l.JDLI NE
802E C32D40 0040 0 JP JR2DOS iJUMP TO TRSDOS READY
8031 50 00410 MSG0 DEFM 'PREPARE TAPE TO PLAY AND PRESS ANY
8057 0D 00420 DEFB 0DH
0100 00430 T>(T DEFS 256 iSTORAGE FOR TAPED MESSAGE
8000 00440 END 8000 H

$CSHWR-647 /X'0287'

Write Leader and Sync Byte

Each cassette "record" begins with a header consisting of a leader sequence and
a synchronization byte. scsHWR writes out this header.

Entry Conditions

None

Exit Conditions

A is altered.

Sample Z-80 Programming

01C8 00100 l,JDCLS
0033 00110 l.JDCHAR
4467 00120 I.JOLINE
0048 00130 KBWAIT
0040 0 0 1 4 0 KBLINE
0212 00150 CASSON
0264 00160 CSOUT
01 F8 001 70 CSOFF

102

EOU 01C8H
EOU 0033H
EQU 4467H
EOU 0048H
EOU 0040H
EQU 0212H
EOU 0264H
EOU 01F8

i l.JDCLS ADDRESS
; 1.JDCHAR ADDRESS
; 1.JDL I NE ADDRESS
iKBWAIT ADDRESS
iKBLINE ADDRESS
iCASSON ADDRESS
iCSOUT ADDRESS
;cSOFF ADDRESS

KEY'

----------------------------" -

DOUBLE-DENSITY

41212D 12)12)1812) JP2DOS EQU 412120H iJUMP TO DOS ADDRESS
121287 12)12)1912) CSHWR EQU 121287H iCSHWR ADDRESS

12)12)212)12) iINPUT A KEYBOARD MESSAGE AND WRITE IT TO CASSETTE
812)12)12) 12)12)2112) ORG 80121121H
812)12)12) CDC901 12)12)22121 CALL l,JDCLS
812)12)3 3E121D 121121230 LOOP1 LO A,0DH iCARRIAGE RETURN
81211215 CD3300 12)12)2412) CALL l,JDCHAR iSKIP TO NE>(T DISPLAY LINE
81211218 21l112)812) 12)12)2512) LO HL,MSG1 iPROMPT MESSAGE
80121B CD6744 12)12)2612) CALL t,JDL I NE iDISPLAY IT
800E 218480 01212712) LO HL ,T)-(T1 i256 BYTE BUFFER
812111 06FF 12)12)2812) LO B,255 iMA>(OF 255 CHARACTERS
812113 CDl100121 12)12)2912) CALL KBLINE iGET A LINE FROM KYBD
812116 38EB 121121300 JR C,LOOP1 iLOOP IF <BREAK> WAS PRESSED
812)18 3El2!D 12112131121 LO A ,0DH
81211 A CD3300 12)12)3212) CALL l,JDCHAR iSKIP A LINE
81211 D 2152812) 12)12)3312) LO HL,MSG2 iCASSETTE PROMPT
812)212) CD6744 12)12)3412) CALL l,JDL I NE
812123 CDl1900 12)12)3512) CALL KBWAIT iWAIT UNTIL A KEY IS PRESSED
812126 F3 12)12)3612) DI iD I SABLE INTERUPTS
812127 CD1202 12103712) CALL CASSON iTURN ON CASSETTE
802A CD8702 12103812) CALL CSHWR i WRITE CASSETTE HEADER
81212D 21848121 12)12)3912) LO HL ,T)<T1 i(HLl=MESSAGE
812)312) 7E 01214121121 LOOP2 LO A dHLl iA=ASCII BYTE
812131 23 1211214 1121 INC HL iPOINT TO NE)<T BYTE
812132 CD6402 12)12)42121 CALL CSOUT i WRITE LAST BYTE TO TAPE
812135 FE12!D 12)12)43121 CP 0DH iWAS IT A CARRIAGE RET'N?
812137 20F7 12)12)44121 JR NZ,LOOP2 i IF NO, THEN GET NE>:T BYTE
812139 CDF801 12)12)l1512) CALL CSOFF ; IF YES, TURN OFF CASSETTE
803C FB 12)12)4612) EI iENABLE INTERUPTS
81213D C32Dl10 1210l1712) JP JP2DOS iJUMP TO DOS READY
812)412) 54 12)12)l1812) MSG1 DEFM 'TYPE IN A MESSAGE'
812151 121D 01214912) DEFB 0DH
812152 LID 12)12)512112) MSG2 DEFM 'MESSAGE STORED, PRESS AY KEY WHEN READY

TO RECORD'
812)83 121D 121051121 DEFB 1210H
12) 112)12) 12)12)5212) T)<T 1 DEFS 256
812)12)12) 12105312) END 8121121121H

For a program to read the tape in, see $CS HIN.

$CSIN-565/X'0235'

Input a Byte
After completion of $CS HIN, use $CSIN to begin inputting data, one byte at a
time.

103

TRS-80 MODEL I DISK SYSTEM

Note: You must call $CSIN often enough to keep up with the baud rate.

Entry Conditions

None

Exit Conditions

A = Data byte

Sample z-so Programming

See $CSHIN.

$CSOFF -504/X'0lFS'

Turn Off Cassette

After writing data to cassette, call this subroutine to tum off the cassette drive.

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See $CSHWR.

$CSOUT-612/X'0264'

Output a Byte to Cassette

After writing the header with $CSHWR, use $CSOUT to write the data, one byte at
a time.

Note: You must call $CSOUT often enough to keep up with the baud rate (either
soo or 1soo baud).

Entry Conditions

A = Data byte.

104

Exit Conditions
None

Sample z-so Programming
See $CSHWR.

$DELAY -96/X'0060'

Delay for a Specified Interval

DOUBLE-DENSITY

This is a general-purpose routine to be used whenever you want to pause before
continuing with a program.

Entry Conditions
BC = Delay multiplier. Actual delay will be:

BC = N. 21.9MS + (14.6*N)

This includes CALL and RETURN times
When BC = 0000, 65536 is used. This is
the maximum delay
(about one second).

Exit Conditions
BC and A are altered.

Sample z-so Programming
3E20 00100 CENTER EOU 3E20H iROW8i COLUMN 32 OF l.J IDEO
01C8 00110 l,JDCLS EQU 01C8 i 1•1DCLS ADDRESS
0080 00120 DELAY EQU 0080H iDELAY ADDRESS
ll02D 00130 JP2DOS EQU ll02DH iJUMP TO DOS ADDRESS
8000 001ll0 ORG 8000H
8000 ODC901 00150 CALL l,JDCLS iFIRST CLEAR SCREEN
8003 3Efi'l0 00180 LO A,0H
8005 01FF7F 00170 LO BC,7FFFH iSET 1/2 SEC DELAY FACTOR
8008 32203E 00180 LOOP3 LO (CENTER) ,A iWRITE CHAR, TO l.J IDEO
8008 F5 00190 PUSH AF iSAl)E LAST CHAR, CODE
800C cs 00200 PUSH BC iAND DELAY FACTOR
800D CD6000 00210 CALL DELAY
8010 C1 00220 POP BC
8011 Fl 00230 POP AF
8012 3C 002ll0 INC A i NE>(T CHAR, CODE
8013 20F3 00250 JR Nl,LOOP3 iIF NOT ZERO, DISPLAY IT

105

TRS-80 MODEL I DISK SYSTEM

8015 C32D40 00260
8000 00280

JP JP2DOS
END 8000H

$KBCHAR-43/X'002B'

Get a Keyboard Character if Available

iELSE END

This subroutine checks the keyboard for a character. The character (if any)
is not displayed.

Entry Conditions

None

Exit Conditions

A = ASCII Character. If A = o, no character was available.
DE is altered.

Sample

KBCHAR
LOOP

106

EOU 2BH
CALL KBCHAR
OR A
JR Z,LOOP

DOUBLE-DENSITY

$KBLINE-64/X'0040'

Wait for a Line from the Keyboard

This routine gets a full line from the Keyboard. The line is terminated by a
carriage return <x·oo·) or (BREAK) (x·ot ·J. Characters typed are echoed to the
display.

Entry Conditions

B = Maximum length of line. When this many characters are typed, no more
will be allowed except for (ENTER) or (BREAK)

(HLJ = Storage buffer. Length should be B + 1.

Exit Conditions

c Status = (BREAK) was the terminator.
B = Number of characters entered.
(HLJ = Line from keyboard, followed by terminating character.
DE is altered.

Sample z-so Programming

See $CSHWR.

$KBWAIT-73/X'0049'

Wait for a Keyboard Character

This routine scans the keyboard until a key is pressed. If (BREAK) is pressed, it
will be returned in A like any other key. The character typed is not echoed to the
Display.

Entry Conditions

None

Exit Conditions

A = Keyboard character
DE is altered.

Sample z-so Programming

See $CSHWR.

107

TRS-80 MODEL I DISK SYSTEM

$PRCHAR-59/X'003B'

Output a Character to the Printer

$PRCHAR outputs a byte to the Printer. If the Printer is not available, the system
will not return to TRSDOS and must be RESET.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered.

Sample z-so Programming

llllll3B Ill Ill l Ill 12! PRCHAR EQU llllll3BH
a020 llllll1112l JP2DOS EQU a02DH
811lllllll llllll 1212! ORG 812lllllllH

11)12) 1312) ; PR INTER DEMO
811)11)11) 21 lllF811l 001 a0 LO HL , T)<T a
811)11)3 7E 11)12) 1512) LOOPS LD A dHLl
811lllla 23 11)12) 1612) INC HL
811)11)5 CD3B012l 11)12) 1 712) CALL PRCHAR
811llll8 FElllD llllll 1812! CP 0DH
BllllllA 211lF7 11)12) 1912) JR NZ,LOOP5
BllllllC C32Da0 11)12)211)12) JP JP2DOS

iPRCHAR ADDRESS
iJUMP TO DOS

; (HL) =SAMPLE TE)<T
iGET CHAR, INTO A
iPOINT TO NE>(T CHAR,
iPRINT CHAR IN A
iWAS IT A CARRIAGE RETURN
; IF NO, GET NE>(T CHAR,
i IF YES, QUIT

811llllF sa 11)12)2112) nna DEFM 'THIS SENTENCE WILL BE PRINTED'
Blll2C lllD 11)12)2212) DEFB lllDH
811lllllll 11)12)2312) END BlllllllllH

$READY-6681/X'1A19'

Jump to Level II BASIC "Ready"

To exit from a machine-language program into BAs1c's immediate mode, jump
to $READY (don't call it).

Entry Conditions
None

108

DOUBLE-DENSITY

Exit Conditions

None

$RESET-0/X'0000'

Jump to RESET

Jump to this address to re-initialize the entire system. If a disk controller is
present. the Computer will attempt to load TRsoos. To prevent this from
happening, the operator must hold down (BREAK) before this jump is executed.

Entry Conditions

None

Exit Conditions

None

$VDCHAR-51/X'0033'

Display a Character

This subroutine displays a character at the current cursor location.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered.

Sample Z-80 Programming

See SCSHIN.

$VDCLS-457 /X'01C9'

Clear the Video Display Screen

109

TRS-80 MODEL I DISK SYSTEM

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample z-so Programming

See $CSHWR.

Technical Note

The Sector Register (Address 37EEH) on the Floppy Disk Controller not only
allows double-density operation without modification to the Expansion
Interface, but it also serves as a control register for the Double-Density Adapter.
The control register is enabled by data bits 7, 6, and 5 whenever these bits are
not 0. The following combinations allow configuration changes as follows:

07 06
0
0
I
I

05

0
I
0
I

For Assembly Language:
LDL A.80H

LD D7EEH),A

For Basic:
POKE 14318.160

Function

Set Double-Density Mode
Set Single-Density Mode
Disable Precompensation
Enable Precompensation (typically used on
tracks greater than 22)

Set Double-Density Mode
Write to Control Register

Set Single-Density Mode

Any data previously written to the Sector register will be destroyed and must be
rewritten. Any value written to the Sector Register less than 80H will have no
effect on the Double-Density Adapter. Upon Power-up or Reset, the board is
configured to Single-Density and precompensation is disabled.

For more information on Single-Density FDC programming, refer to the Model I
Expansion Interface Service Manual. For Double-Density FDC programming
information, refer to the Model II Technical Reference Manual.

110

~· . ~ . ------~

DIS~i3A IC
IS BASIC

DISK BASIC
DISK ASIC

-------------- ------------------------ ---

DOUBLE-DENSITY

5/Disk BASIC

Start-Up
Under TRSDOS READY. type:

BASIC (ENTER)

TRSDOS will load BASIC and begin the · "initialization dialog.'·

If you want to recover a Disk BASIC program after returning to TRSDOS for a DIR
or other TRSDOS command, use this command under TRSDOS READY:

BASIC * (ENTER)

You will go directly to BAs1c's READY mode without any initialization dialog. If
you had a program in memory. it should still be there. You may not be able to
run the program. To be safe. you should immediately save the program. go to
TRSDOS, then start BASIC again (no asterisk).

Note: If you have overlaid user memory while in TRSDOS, your program will be
erased. In such a case. you should not restart BASIC. but should use the normal
BASIC start-up procedure.

Initialization
When you start Disk BASIC. you are first asked, HOW MANY FI LES?. This lets
you specify the maximum number of tiles that will be '·open·· or in use at one
time. (See OPEN.) Type in an appropriate number and press (ENTER). or simply
press (ENTER) and BASIC will provide for three files.

For example. if your program requires one input file and one output tile. you
should ask for two tiles.

Note: Normally. BASIC will give all your data files a record length of 256.
(Sec File Access Techniques.) If you wish to set the record length of each file
indi,'iclually, use the suffix v for "Variable" after the number of tiles.
For example.

HOW MANY FI LES? 31,1 (fNTER)

tells BASIC to give you three file-buffers. and to let you set the record length of
each file when that file is first opened.

Note: Disk BASIC automatically creates a buffer for loading, saving, and
merging BASIC programs. This buffer exists in RAM below any data tile buffers
you may request. It is always available for program 110. regardless of how you
answer the FILES' question.

111

After you answer the FILES question, BASIC will ask: MEMORY SIZE? Simply
press 1ENTE8) without typing a numher. You will then have the maximum amount
of R:\M available for use by BASIC.

If you will want to load and use machine-language programs or routines, you
will have to protect your BASIC memory from these machine-language programs.

In such a case, respond with the highest memory address (in decimal form) you
want BASIC to use for storing and executing your BASIC programs. Addresses
ahove the number you specify will then he protected from use by BASIC.

Example:

MEMORY SIZE? 32000 (tNTER)

causes BASIC to protect addresses above 32000. If you have 16K of RAM, this
means that you'll have 32767-32000 = 767 bytes protected for storing your
machine-language routines.

After you answer the ML:VlOR Y SIZE question, Disk BASIC will display the
following information:

I. Which version of Disk BASIC you are using

2. Copyright information and creation date

3. The number of free bytes available

4. The number of concurrent files you have requested

To exit from Disk BASIC and return to the TRSDOS READY mode, type:

CMD "S" (ffillii)

This results in a normal return to TRSDOS, without re-initialization of the system.
You may recover your program if you haven't changed user memory while in
TRSDOS by typing BASIC *

BASIC*
Once you are in Disk BASIC. it is sometimes necessary to exit from it in the
middle of developing or running a program. For example you may want to use
TRSDOS to find out what tiles you have saved using DIR, then return to your
BASIC program.

To do this you will need to use the BASIC* command to return to Disk BASIC. By
typing the asterisk after the command, you will be able to return to Disk BASIC.

If you had a program in memory, it should still be there. You may not be able to
run the program. To be safe, you should save your program before going to
TRSDOS and start BASIC (without an asterisk) again.

Note: A space is required between BASIC and the asterisk(*).

112

Example

Suppose you are typing in a BASIC program. and you want to return to TRSDos to
examine the diskette directory. Then type:

CMD "S" (ENTER)
DIR (ENTER)

After examining the directory, you can return to BASIC and recover your program
by typing:

BASIC * (ENTER)

BASIC will skip the FI LES? and MEMORY SIZE? questions and return to the
prompt:

READY

You can now LIST the program to be sure it was recovered. Again. we suggest
you save your program before going to TRsnos. as a safeguard for your
programs.

Note: Do not use the BASIC* command when you have no BASIC program in
memory. This might make the System ·'hang-up:· requiring a Reset or power
off, power-on. Also. if you have overlaid user memory while in TRsnos. your
program will be erased. In such a case you should not restart BASIC. but should
use the normal BASIC start-up procedure.

Options for Loading BASIC

There are several other ways to start up BASIC. as summarized below:

BASIC program - F: files - M: address

program is a rRsoos file specification for a BASIC program. After start-up,
BASIC will run it. If program is omitted, BASIC will start-up in the
command mode.

- F:flles tells BASIC the maximum number of files that may be Open at once.
tiles Is a number from Oto 15. If -F:files is omitted, maximum is set
to 3.

- M:address tells BASIC not to use memory above address. address is a
decimal number. If - M:address is omitted, BASIC uses all memory up
to TOP.

113

TRS-80 MODEL I DISK SYSTEM

The options allow you to specify any or all of the following:

• A program to run after BASIC is started.

• Maximum number of data files that may be Open at once. The larger the
number of files, the less area available for storing and executing your
programs. Each fixed-length file uses 360 bytes and each variable-length file
uses 6 I 6 bytes of memory.

• Highest address to be used by BASIC during program execution. Omit this
unless you are going to call machine-language subroutines.

Examples

TRSDOS READY
BASIC

Tells BASIC to prompt the user for the number of files and the amount of memory
to be used.

TRSDOS READY
BASIC -F:1

Tells BASIC to allow one tile to be open at an given time and to allow all
available memory for use.

TRSDOS READY
BASIC -M:32!Zl!Zl!ZI

BASIC allows three fixed length files to be open, and 32000 is the highest address
it will use during program execution.

TRSDOS READY
BASIC PAYROLL -F:3

BASIC will start up. load and run the BASIC program PAYROLL; three data files can
he Opened. and BASIC can use all available memory.

114

___________________ .. _______________ _

Enhancements to Model I BASIC
Disk BASIC adds many features which are not disk-related. They are listed below
along with abbreviated descriptions. Detailed descriptions follow in alphabetical
order.

&H
&0
Abbreviations
CMD"A ..
CMD"B""
CMD··c-·
CMD"D""
CMD"E"'
CMD"I"
CMD'T'
CMD"K"
CMD"L"
CMD"0"
CMD"P"
CMD"R"
CMD"S"'
CMD"T"'
CMD"X"

CMD"Z"
DEFFN
DEFUSR

INSTR
LINE INPUT
MID$=

NAME
TIME$
USRn

Hexadecimal-constant prefix
Octal-constant prefix
Many commands have abbreviations
Return to TRSD0S with error message
Enable/Disable (BREAK)
Delete spaces and remarks from a program (compression)
Display directory for specified drive
Display previous TRSD0S error
Return a command to TRSDOS
Convert calendar date
Turn 0N10FF clock display
Load Z-80 subroutine or program file into RAM
Alphabetizes (sorts) a string array only
Check printer status
Start real-time clock interrupts
Normal return to TRSD0S (jump to EXIT routine)
Turn off real-time clock interrupts
Cross-reference of reserved words, string variables, or
strings in a program
Duplicate output to Display and Printer
Define BASIC-statement function
Define the entry point for an external machine-language
routine
Instring function; find the substring in the target string
Input a line from keyboard ~
Replace portion of the target string (used on left of equals
sign)
Renumber a program in RAM
Get value of real-time clock
Call external routine (n=0,1,2, ... ,9)

&Hand &O (hex and octal constants)
Often it is convenient to use hexadecimal (base 16) or octal (base 8) constants
rather than their decimal counterparts. For example, memory addresses and byte
values are easier to manipulate in hex form. &Hand &o let you introduce such
constants into your program.

&H and &o are used as prefixes for the numerals that immediately follow them:

115

TRS-80 MODEL I DISK SYSTEM

&Hdddd

dddd is a 1 to 4 digit sequence composed of hexadecimal numerals
0,1, ... 9,A,B, ... ,F.

&oddddd

ddddd is a sequence of octal numerals 0, 1, ... , 7 and &oddddd< = 177777
octal.

Note: Theo can be omitted from the prefix &o. Therefore &oddddd= &ddddd.

The constants always represent signed integers. Therefore any hex number
greater than &H7FFF, or any octal number greater than &077777, will be
interpreted as a negative quantity. The following table illustrates this:

Octal Hex Decimal

&1 &H1
&2 &H2
&77777 &H7FFF
&100000 &H8000
&100001 &H8001
& 1 00002 &H8002
&177776 &HFFFE
& 177777 &HFFFF

2
32767

-32768
-32767
-32766
-2
-1

Hex and octal constants cannot be typed in as responses to an INPUT prompt
or be contained in a DA TA statement. Often the hex or octal constant must be
enclosed in parentheses to prevent a syntax error from occurring.

Examples

PRINT &H5200, &051000

prints the decimal equivalent of the two constants (both equal 20992).

POKE &,H3C00 t 42

puts decimal 42 (ASCII code for an asterisk) into video memory address hex
3COO.

Model I Disk BASIC Abbreviations
Abbreviation

116

Meaning

List Previous Program Line
List Next Program Line

------------------- ---- ---------

GJ
GJ
(SHIFT)~
(SHIFT)~ CD
LXX

EXX

DXX

List Current Program Line
Edit Current Program Line
List First Program Line
List Last Program Line
List Program Line xx
Edit Program Line xx
Delete Program Line xx

DOUBLE-DENSITY

AXXX,XXXX Automatic Line Numbering Beginning at Line xxx,
Incrementing by xxxx.

CMD ''A''
Return to TRSDOS

CMD"A"

This command allows you to return to TRSDOS with an error message:

OPERATION ABORTED

Example
After an input/output error occurs in a BASIC program, you might want to exit to
TRsoos and print a message_

CMD"A"

the following will be displayed:

OPERATION ABORTED
TRSDOS READY
♦ ♦ ♦ t t ♦• ♦• t ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

CMD ''B''
Enable/Disable BREAK Key

CMD"B", "switch"

switch is either ON or OFF. switch must be enclosed in quotation marks.

117

------------····· ·-··-··-.

TRS-80 MODEL I DISK SYSTEM

This command enables or disables the (BREAK) key. While the function is "OFF,"

the (BREAK) key will be ignored except during cassette or printer output or during
serial input/output.

The (BREAK) key will remain disabled even after the program has ended. To
enable the (BREAK) key, use the CMD"B","ON" command. Returning to TRsoos

via the CMD"S" or CMD'T' commands will also enable the (BREAK) key.

Note: AUTO command automatically enables (BREAK) key.

Examples
CMD"B" ,"OFF"

Disables the (BREAK) key.

CMD"B" ,"ON"

Returns the (BREAK) key to its normal function.

CMD "C"
Compress Program

CM□ "C", options

options may be either R (delete remarks) ors (delete spaces). If both
options are omitted, remarks and spaces are deleted. If only one is
omitted, only the specified action is taken.

This command allows you to compress a program so that it requires less
RAM and less storage space on diskette. You can elect to remove all remark
statements (beginning with REM or') or to delete all spaces between BASIC

keywords. Spaces inside quotes will not be deleted. The REM will not be
removed if it is the only command on a line.

Example

Your program reads as follows:

850 RESTORE: ON ERROR GOTO 800 'DOG PROGRAM
860 READ COMPANY$ 'PET STORE

118

870 PRINT RIGHTS(COMPANYS,21 ,: GOTO 880
880 END

DOUBLE-DENSITY

If you want to delete the Remarks (lines 850 and 860). type in the command:

CMD"C" ,R

and the program will now read:

850 RESTORE: ON ERROR GOTO 800
880 READ COMPANY$
870 PRINT RIGHTS(COMPANYS,21,:GOTO 880
880 END

If you then wanted to delete the spaces, type in:

CMD"C" ,S

and the program would read:

850 RESTORE:ONERRORGOTO800
880 READCOMPANY$
870 PRINTRIGHT$(COMPANY$,2) ,:GOTO880
880 END

You could obtain the same results by typing:

CMD"C"

Note: Always provide the closing quotes on string literals in your BASIC

program. Otherwise CMD"C" may not function properly. For example, in

10 PRINT "THIS IS A TEST"

the second quote should be used even though omitting it will not cause an error.

CMD"D"
Display the Directory Listing
of a Specified Drive

CMD"o:d''

dis the drive specification

119

ia_::·:_· · · · ~ ill TRS-80 MODEL I DISK SYSTEM

~-70 ~ -"":'.~ ...
<·1111111••·:::: ' -~-

By entering the command cvrn"n:d"'. you can obtain a specified diskette 's
directory listing from BASIC without returning to TRSDos. Only unprotected,
visible files in double density will be displayed. The drive specification is not
optional and must be specified for all drives, including Drive 0. The directory
that appears using CMD"D'" is not the same format as the TRSDOS library
command DIR. and there is no option for the printer.

Example

If you type in the command:

CMD"D:1"

the directory listing for Drive I will be displayed.

CMD"E"
Display Previous TRSDOS error

CMD"E"

This command displays the last TRSDOS error message. If no errors have
occurred prior to the command. the message NO ERROR FOUND will be
displayed.

Example

If you have a two-drive system (0 and l) and you type:

SAl,IE "PROGRAM: 3"

Disk BASIC will return a DI SK I/ O ERROR. To find out what kind of 10 error
occurred. type: CMD "E" (ENTER) and Disk BASIC will return with DI SK DR I l,IE

NOT IN SYSTEM.

120

DOUBLE-DENSITY

CMD"I"
Execute TRSDOS Commands from Disk BASIC

CMD"I", command

command is a string expression containing a rRsoos command or a z-eo
program file name. If it is a string constant, it must be enclosed in
quotes.

You may execute TRsoos commands directly from BASIC by using CMD"l'·.

This is similar to CMo--s··. except that it lets you include a command or Z-1'0

program for TRSDOS to execute.

Example

CMD" I" , "PROGRAM"

returns you to TRSDOS and executes the program tile PROGRAl\1.

CMD"I" ,A$

returns you to TRSDOS and executes the command contained in 1\\.

CMD"J"
Calendar Date Conversion

CMO"J", input, output

input is a string expression containing the date to be converted. Its contents
may be in either of two formats:
Al mmlddlyy
B) -yy/ddd

Format A gives the date in month-day-year sequence. Format e gives
the day of the year (from 1 to 365 or 366 for leap years). In formate,
the hyphen is required.

121

TRS-80 MODEL I DISK SYSTEM

output is a string variable to contain the converted date. If input is in format
A, output will contain the day of year. If input is in format B, output
will contain the date in format A.

This command converts dates back and forth between two formats: the standard
month. day, year, sequence: and a year, day of year. sequence. The content of
the source string: determines which way the conversion goes.

Example

CMD"J" t "11/312)/812)" t 0$

Returns the day of the year in DS.

CMD"J"t "-79/312)0"1 0$

Returns the month. day. year, equivalent in DS (the date for the 300th day
of 1979).

Sample Program

10 CLEAR 512)
212) LINE INPUT"ENTER FIRST DATE (MM/00/YY) "; FD$
312) LINE INPUT"ENTER SECOND DATE (MM/00/YY) "iSD$
LIIZ) CMD"J" t FD$ t 01$
512) CMD"J" t SD$ t 02$
612) Yl = VAL(RIGHT$(F0$12))
712) Y2 = VAL(RIGHT$(S0$12))
812) Jl = VAL(RIGHT$(Dl$13))
912) J2 = VAL(RIGHT$(02$13))
112)12) Sl = Y1*365 + Jl
1112) S2 = Y2*365 + J2
1212) PRINT "THE INTERI.JAL BETWEEN DATES IS";
1312) PRINT ABS(S1-S2); "DAYS "i
1412) PRINT "(IGNORING LEAP-YEARS),"
1512) INPUT "<ENTER> TO CONTINUE" i A$
1612) GOTO 212)

122

---------------------·------------------- ------~-

DOUBLE-DENSITY

CMD"K"
Turn Clock Display ON/OFF

CMD"K", "switch"
switch is either DN or OFF. switch must be enclosed in quotes.

This command is used to tum ON and OFF the Real-Time Clock display in the
upper-right comer of the Video Display. When it is ON, the 24-hour time will be
displayed and updated once each second, regardless of what program is
executing.

Note: The Real-Time Clock is always running (except during cassette LO, see
CMD'"R" and CMD'"T'"; or during disk uo), regardless of whether the display is ON

or OFF.

Example

CMD"K" ,"ON"

Tums the clock display ON.

CMD"K" ,"OFF"

Tums the clock display OFF.

CMD"L"
Load Z-80 Routine into RAM

CMD' 'L", routine

routine is a string expression containing a file specification for a z-ao
routine or program created by the DUMP command. If routine is a
string constant, it must be enclosed in quotes.

123

TRS-80 MODEL I DISK SYSTEM

CMD"L" loads a Z-80 (machine-language) routine into RAM. It would normally
be used to load a Z-80 subroutine which is to be accessed directly from BASIC.

The Z-80 routine should load into high-RAM and must not overlay the memory
protect area reserved when you first entered BASIC (i.e., the MEMORY SIZE?
prompt). If you do not overlay BASIC or TRSDOS, control will return to BASIC
after the program is loaded.

Example

The command:

CMD"L" ,"PROG"

will load a program file named PROG into RAM.

CMD"L" ,P$

will load a program which has been specified as P$.

CMD"O"
Sort ("Order") an Array

CMD"D",x,array (start)

x Is an integer variable containing the number of items to be sorted.

array (start) specifies an array element. The array contains the data to be
sorted, and start is the subscript of the first element to be sorted. The
array must be one-dimensional, string type. The string elements in
array may be of any length.

Note: If xis larger than the size of the array, then the results will be
unpredictable.

This command sorts (orders) a one-dimensional string array, i.e., a list. You
may sort all or part of the array, depending on the values you give to x and start.

Example
10 CLEAR 10 * 25 + 50 'ROOM FOR 10 WORDS+ EXTRA
20 DIM A$(8l 'LIST OF TEN 10-8)
30 FOR WD = 0 TO 8

124

- -------~-- ----·~---·------------ ------------------

40 PRINT "ENTER WORD
50 INPUT A$(WD)
60 NE>(T WD
711l N'X, = 1 IZ!: CMD"O II'
80 PRINT "HERE IS
SIil FOR WD=IZ! TO S
llZ!IZl PRINT A$(WD)
1111l NE>(T WO

CMD"P"

NZ,
THE

#II; WD+l

A$ (IZ))

SORTED

Check Printer Status

CMD"P",String

string is a string variable

LIST"

CMD"P" makes it possible for Disk BASIC to check the status of the Printer.

Unlike the video display, the Printer is not always available. It may be
disconnected, offline, out of paper. etc. In such cases, when you try to output
information to the Printer, the Computer will wait until the Printer becomes
available. It will appear to '"hang up." To regain control (and cancel the
printer operation), press RESET.

Suppose you have a program which uses printer output. If a printer is not
available, you don't want the Computer to stop and wait for it to become
available. Instead, you may want to print a message such as PRINTER
UNAt,IA I LABLE and go on to some other operation.

To accomplish this, you need to check the printer status. CMD"P" can be used to
check the printer's status at any time. It returns the contents as an ASCII-coded
decimal number. The specific value of this number depends upon the type of
printer you are using as well as its status at any particular time. The value may
then be printed or examined by the program.

Only the four most significant bits are used in this "status byte '· In binary,
these must be: "0011" or else the print operation will not be attempted. To
check for this "go" condition, AND the status byte with 240 and compare the
result with 48. The meaning of each status bit depends on which printer you
use. See the Printer's owner's manual for bit designations.

--- ----------

125

TRS-80 MODEL I DISK SYSTEM

Example

10 CMD"P" ,>($
20 ST%= VALIX$l AND 240
30 IF ST'X. <> 48 THEN PRINT "PRINTER UNAl.JAILABLE": STOP
40 PRINT "PRINTER Al,JAILABLE"
50 REM PROGRAM MAY NOW CONTINUE

CMD"R"
Start Clock (Enable Interrupts)

CNO"A"

This command is used to start the Real-Time Clock after a tape input/output
operation has been performed. See cMo·-r·.

Example

To turn the clock on, type: CMD" R" To turn the clock off, type: CMD" T"

CMD"S"
Return to TRSDOS

CMD"S"

To exit from Disk BASIC, returning control to TRSDOS, simply type the
command: CM D" S "(ENTER)

To return to BASIC and recover your program, use BASIC *. However. recovery
will not always be possible. See BASIC *.

Example

The BASIC prompt lets you know you are in Disk BASIC.

126

READY
)

To exit, type: CMD II s 11 (ENTER)

and the TRSD0S prompt will appear.

TRSDOS READY

t. ♦ • t • ♦ t. t t t. ♦ t t

CMD''T''
Stop Clock (Disable Interrupts)

CMD"T"

DOUBLE-DENSITY

This command turns off the real-time clock. You must execute this command
immediately before any BASIC tape input/output operation. Such operations are
timing sensitive and cannot allow the interrupt-driven tasks (such as real-time
clock, TRACE, and CLOCK-display) to "steal" time.

Here are the commands which must be preceded by execution or CMD'T':

CLOAD
INPUT#-!
INPUT#-2
SYSTEM

CLOAD?
CSAVE
PRINT#-!
PRINT#-2

After completion of these operations, you can execute a CMD"R" to re-enable
interrupts.

Example

Suppose you want to load in a Level II BASIC program from cassette called
'"TEST'". Before attempting to load it, type in:

CMD II T II (ENTER)

to disable the interrupts. You may now load the program by:

CLOAD II TEST II (ENTER)

When the program is loaded, type: CMD II R II to turn on the clock.

127

--------------·-···-··-·-----------

rc.1 ... ill TRS-80 MODEL I DISK SYSTEM 3-l½i
·,·• '~.- ..

'·
-, ---- ---~

CMD "X"
Cross-reference of Program Lines

CMO "X", target

target is either a BASIC reserved word (such as PRINT) or a string-literal. II it
is a reserved word, it must not be enclosed in quotes; if it is a string
literal, it must be enclosed in quotes.

This command finds all occurrences of a reserved word or other string literal in
the resident program. The "finds" are listed on the display as line numbers.

To search for any BASIC reserved word (including reserved arithmetic operators),
use the keyword as-is. To search for anything else (including variable-names and
text), enclose the text inside quotes.

For example, suppose you have the following program in memory:

1IZI PRINT "THIS IS A TEST"
20 INPUT "PRESS <ENTER> FOR THE NE>'.T PR I NT MESSAGE"; Z$
30 A= A+ 1
40 PRINT "+++++++"

CMD ")<" , PR I NT will find all occurrences of PRINT, except for cases where
PRINT was part of a quoted string: lines IO and 40.

CMD
20.

11\/11
/\ t "PRINT" will find all occurrences of '"PRINT'' as a string literal: line

CMD ")<", + will list line 30, but CMD ")<", "+" will list line 40. CMD ")<",
"A" will list lines I 0, 20, and 30. Notice that variables and text are both treated
as string literals.

CMD ''Z''
Duplicate Output to Video and Printer

CMO"Z", "switch"

switch is either ON or OFF. switch must be enclosed in quotation marks.

128

----- ---------------------------------- -

DOUBLE-DENSITY

This command enables or disables dual video/printer output. While the function
is "oN ," all video output is copied to the printer, and all printer output is copied
to the video. (The printer should be on-line when you tum dual output "c)N_")

Video and printer output may differ due to intrinsic differences in the Printer
and video devices.

Note: SPOOL must be off or an ILLEGAL FUNCTION CALL message will be
displayed.

Examples
CMD "Z", "ON"

Tums dual video/printer output on.

CMD"Z", "OFF"

Tums dual video/printer output off.

DEFFN
Define Function

DEFFN function name (argument-1, .. .) = formula

function name is any valid variable name.

argument-1 and subsequent arguments are used in defining what the
function does.

formula is an expression usually involving the argument(s} passed on
the left side of the equals sign.

The DEF FN statement lets you create your own function. That is, you only
have to call the new function by name, aud the associated operations will
automatically be performed. Once a function has been defined with the DEF FN

statement, you can call it simply by inserting FN in front offimction name. You
can use it exactly as you might use one of the built-in functions, like SIN, ABS.

and STRING$.

The type of variable used forfimction name determines the type of value the
function will return. For example. iffunction name is single precision, then that
function will return a single-precision value, regardless of the precision of the
arguments.

129

TRS-80 MODEL I DISK SYSTEM

The particular variables you use as arguments in the DEF FN statement
(argument-I) are not assigned to the function. When you call the function
later. any variable name of the same type can be used.

Furthermore. using a variable as an argument in a DEF FN statement has no effect
on the value of that variable. So you can use that particular variable in another
part of your program without worrying about interference from DEF FN.

The function can he defined with no arguments at all, if none are required.
For example:

DEF FNR = RND (90) + 9

defines a function to return a random value between 10 and 99.

Examples
DEF FNR (A , B) = A + I NT (<B - (A - 1)) * RND (0))

This statement defines function FNR which returns a random number between
integers A and B. The values for A and B are passed when the function is
"called," i.e .. used in a statement like:

Y = FNR(Rl, R2)

If RI and R2 have been assigned the values 2 and 8, this line would assign a
random number between 2 and 8 to Y.

DEF FNL$0() =STRING$()<,"-")

Defines function FNLS which returns a string of hyphens, x characters long.
The value for x is passed when the function is called:

PRINT FNL$(30)

This line prints a string of 30 hyphens.

Here's an example showing DEF FN used for a complex computation - in
double-precision.

DEF FN)(#(A:11, B:11) = (A# - B:11) * (A# - B:11)

Defines function rnx# which returns the double-precision value of the square of
the difference between A# and B#. The values for A# and B# are passed when
the function is called:

We assume that values for A# and B# were assigned elsewhere in the program.

Sample Program
710 DEF FNt.J(T) = (1087 + SQR(273 + T))/18,52
720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"; T
730 PRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES

CELSIUS IS" FN 1.J (T) "FEET PER SECOND,"

130

DEFUSR
Define Point of Entry for USR Routine

DEFUSRn = address

n equals one of the digits O, 1, ... ,9; if n is omitted, O is assumed. address
specifies the entry address to a machine-language routine. address
must be in the range [-32768,32767}. address may be any numeric
expression or constant from - 32768 to 32767.

DEFUSR lets you define the entry points for up to IO machine-language routines.
In non-Disk BASIC, the addresses were POKEd into RAM. This POKE method
cannot be used in Disk BASIC.

Examples
DEFUSR3 = t,H7D00

assigns the entry point x·7O00·, 32000 decimal, to the USRJ call. When your
program calls usR:i, control will branch to your subroutine beginning at x·moo·.

DEFUSR = (BASE + 1 G)

assigns start address (BASE + 16) to the us Ro routine.

Note: When decimal addresses are given, they are evaluated as signed two-byte
integers. So, for addresses above 32767, use desired decimal address - 65536.
See usRn.

INSTR
Search for Specified String

INSTR (position, string 1, string 2)

position specifies the position in string 1 where the search is to begin.
position is optional; if it is not supplied, search automatically begins
at the first character in string 1. (Position 1 is the first character in
string 1.)

---- -· ·-·------------------

131

string 1 is the string to be searched.

string 2 is the substring you want to search for.

This function lets you search through a string to see if it contains another string.
If it does, INSTR returns the starting position of the substring in the target string;
otherwise, zero is returned. Note that the entire substring must be contained in
the search string, or zero is returned. Also, note that INSTR only finds the first
occurrence of a substring at the position you specify.

Examples

In these examples, A$ = "'LINCOLN":

INSTR(A$, "INC")

returns a value of 2.

INSTR (A$, "12")

returns a zero.

INSTR(A$, "LINCOLNABRAHAM")

returns a zero. For a slightly different use of INSTR, look at

INSTR (3, "1232123", "12")

which returns 5.

Sample Program
This program gets search and target text from the keyboard, then locates all
occurrences of the target text in the search text. Line 90 is just for "show."

112) CLEAR 112)12)12)
212) CLS
312) INPUT "SEARCH TE>(T"; S$
412) INPUT "TARGET TE>(T"; T$
45 CLS
512) C = 12) : p = 1 / p = POSITION, C = COUNT
612) F = INSTR(P,S$,T$)
712) IF F = 12) THEN 1212)
812) C = C + 1

132

DOUBLE-DENSITY

90 PRINT @01LEFT$(S$1F-1) + STRING$(LEN(T$)t191) +

RIGHT$(S$ 1LEN(S$)-F-LEN(T$)+1)

100 P = F + LEN(T$)

110 IF P <= LEN(S$) - LEN(T$) + 1 THEN 60

120 PRINT "FOUND "; C; "OCCURRENCES"

LINE INPUT
Input a Line from Keyboard

LINE INPUT "prompt" ;variable

prompt is a prompting message.

variable is the name that will be assigned to the line you type in.

LINE INPUT (or LINEINPUT-the space is optional) is similar to I!'.'.Pl 1T, except:

• The Computer will not display a question mark when waiting for your
operator's input.

• Each LINE INPUT statement can assign a value to just one variable.

• Commas and quotes your operator can use as part of the string input.

• Leading blanks are not ignored- they become part of rnriable.

• The only way to terminate the string input is to press (Bff"rn).

LINE INPUT is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks. colons, etc.).
The (ENTER) key serves as the only delimiter. If you want anyone to be able to
input information into your program without special instructions, w-,e the LINE
INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the data. LINE INPUT serves well in .. such cases.

Examples
LINE INPUT A$

Input A$ without displaying any prompt.

LINE INPUT "LAST NAME I FIRST NAME? "iN$

133

TRS-80 MODEL I DISK SYSTEM

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

Sample Program
200 REM CUSTOMER SURl.JEY
205 CLEAR 1000
207 PRINT
210 LINE INPUT "TYPE IN YOUR NAME "i A$
220 LINE INPUT "DO YOU LIKE YOUR COMPUTER? "; B$
230 LINE INPUT "WHY? "; C$
235 PRINT
240 PRINT A$: PRINT
250 IF B$= "NO" THEN 270
260 PRINT "I LIKE MY COMPUTER BECAUSE 11 j C$:END
270 PRINT "I DO NOT LIKE MY COMPUTER BECAUSE "; C$

Notice that when line 210 is executed, a question mark is not displayed after the
statement, "Type in your name." Also, notice on line 230 you can answer the
question "Why" with a statement full of delimiters. commas and quotes.

MID$=
Replace Portion of String

MIDS (oldstrlng, position, length) = replacement-string

oldstring is the variable-name of the string you want to change.

position is the numeric expression specifying the position of the first
character to be changed.

length is a numeric expression specifying the number of characters to be
replaced.

replacement-string is a string expression to replace the specified portion
of oldstring.

Note: If replacement-string is shorter than length, then the entire replacement
string will be used.

This statement lets you replace any part of a string with a specified new string.
giving you a powerful string editing capability.

134

----------------------- ---------------- - - ------ - - -- ------- -- ---

DOUBLE-DENSITY

Note that the length of the resultant string is always the same as the original
string.

Examples
A$ = "'LINCOLN" in the examples below:

MID$(A$, 3, 4) = "12345": PRINT A$

which returns LI I 234:'J.

MID$(A$, 1, 2) ="":PRINT A$

which returns LINCOLN_

MID$(A$, 5) = "12345": PRINT A$

returns LINCI23.

MID$(A$, 5) = "12)1": PRINT A$

returns LINC0I N.

MID$(A$, 1, 3) ="***":PRINT A$

returns ***COLN.

Sample Program

7712) CLS: PRINT: PRINT
7812) LINE INPUT "TYPE IN A MONTH AND DAY MM/DD, "i S$
790 P = INSTR(S$, "/")
812)12) IF P = IZl THEN 7812)
8112) MID$(S$, P, 1) = CHR$(45)
8212) PRINTS$" IS EASIER TO READ, ISN'T IP"

This program uses INSTR to search for the slash("/''). When it finds it
(if it finds it). it uses MIDS= to substitute a " - " <CHR$(45)) for it.

NAME
Renumber the Current Program

NAME newline, startline, Increment _ ~It.
newllne specifies the new line number of the first line to be renumberdi{,

If omitted, 10 is used. - ,,
\'''"'~',\{is,_

135

startline specifies the line number in the original program where
renumbering will start. If omitted, the entire program will be
renumbered.

increment specifies the increment to be used between each successive line
number. If omitted, 10 is used.

Examples

NAME

Renumbers the entire program: 10, 20, 30

NAME 8000,5000,100

Renumbers all lines numbered from 5000 up; the first renumbered line will
become 6000. and the following lines will be incremented by 100. All line
references within your program will be renumbered also.

TIME$
Get Value of Real-Time Clock

TIME$

TIME$ is a function with no arguments -when executed, it returns a string-value
composed of the date and time currently stored in the Real-Time Clock memory
area. The string is always 17 characters long and has the following format:

MMIDDiYYIIHH:MM:ss (month/day/year hr:min:sec)

The hour appears in 24-hour form, e.g .. 1:30 PM appears as 13:30.

The TIME and DATE are initially set at power-up in TRSDOS.

To reset the time and date, get into the TRSDOS READY mode and use the
TRSDOS commands, TIME and DATE, as follows (assume it's 3:30 PM on January
I, 1979):

TIME 15:30:00 (ENTER)
DATE 01/ 01 /78 (ENTER)

136

DOUBLE-DENSITY

TIME$ can be printed or used internally by your program in dedicated
applications.

Examples

llllllllll IF LEFT$(TIME$d5l="lll7/lllll/79 20:llllll"THEN 2000
1010 GOTO llllllllll
2000 REM,,,IT'S 8PM ON JULY llTH, 1979
2010 REM,,,START FIREWORKS DISPLAY

The following program, Clock, will display the time and date until you press the
@J key.

lllllll ' PROGRAM: CLOCK
110 EXAMPLE OF TIME$
1212) '
130 CLS: PRINT CHR$ (23) 'GET INTO 32 CHARACTER MODE
1 lllll '
150 '****** PRINT TIME AND DATE*******
1 GIil '
170 PRINT @ 2Gll, "THE TRS-80 TIME IS";
180 PRINT@ 458, "DATE:"; LEFT$ (TIME$, 8li
190 PRINT @ 586, "TIME: 11

; RIGHT$ (TIME$, 8);
212)12) I

210 ' ***** STOP IF "@" KEY IS DEPRESSED *****
2212) I

230 A$=INKEY$: IF A$= "@" THEN END ELSE 180

USRn
Call to User's External Subroutine

usRn (nmexp)

where n specifies one of ten availabte usR calls, n=0,1,2, ... ,9. If n is
omitted, zero is assumed.

nmexp is an integer from - 32768 to 32767 and is passed as an integer
argument to the routine.

137

TRS-80 MODEL I DISK SYSTEM

These functions (usRo through USR9) transfer control to machine-language
routines previously defined with DEFUSRn statements.

When a URS call is encountered in a statement, control goes to the address
specified in the DEFUSRn statement. This address specifies the entry point to your
machine-language routine.

Note: If you call a usRn routine before defining the routine entry point with
DEFLJSR/l' an ILLEGAL FUNCTION CALL error will occur.

You can pass one argument and retrieve one output value directly via the LJSR
argument; or you can pass and retrieve arguments indirectly via POKE and PEEK
statements.

Example

10 DEFUSR1=&H7D00
20 REM,,,MORE PROGRAM LINES HERE
100 A=USR10()

The effect of this sequence is to:

1. Define usR as a routine with an entry point at hex moo (line 10).

2. Transfer control to the routine; the value x can be passed to the routine if the
routine makes the CALL described below (line 100).

3. When the routine returns to BASIC, the variable A may contain the value
passed back from the routine (if your routine makes the JUMP described
below); otherwise A will be assigned the value of x (line 100).

Passing arguments to and from USR routines

There are several ways to pass arguments back and forth between your BASIC
main program and your LJSR routines: the two major ways are listed below.

1. POKE the argument(s) into fixed RAM locations. The machine-language routine
can then access these values and place results in other RAM locations. When
the routine returns control to BASIC, your program can PEEK into these
addresses to pick up the "output" values. This is the only way to pass two
or more arguments back and forth.

2. Pass one argument to the routine as the argument in the usRn call, then use
special ROM calls to access this argument and return a value to BASIC. This
method is limited to sending one argument and returning one value (both
are integers).

ROM Calls

CALL 0A7FH Puts the USR argument into the HL register pair; H contains MSB, L
contains LSB. This CALL should be the first instruction in your LJSR
routine.

138

----------------------------- ----·-----~

--------------------- ---·-· ·------------------

DOUBLE-DENSITY

JP OAlJ.-'\H Use this Jl .\11' to return to B\SIC: the integer in HI hernmes the
output of the l'SR call. If you don·t care ahout returning HI. then
execute a simple RFrurn instruction instead of this Jl'\11'.

Listed below is an assemhled program to white out the display (an .. irnerse ..
(CLE.AF!) key!l. Don·t type it in. l\pe in the BASIC program that follows it.

1211211121121
12112111121 ZAP OUT SCREEN USR FUNCTION
12112112121

7D121121 12112113121 ORG 7D121121H
12112114121
12112115121 EQUATES
12112115121
1211211 7121 1.1 I DEO EQU 3C121121H iSTART OF 1,1 IDEO RAM 3C121121

121121BF
1213FF

12112118121 WHITE EQU 121BFH iALL WHITE GRAPHICS
12112119121 COUNT EQU 3FFH iNUMBER OF BYTES TO
1211212121121
12112121121 j PROGRAM CHAIN M0 1.IES)< I BF/ INTO ALL OF 1.1 I DEO RAM
12112122121

7D121121 211211213C 12112123121 ZAP LD HL ,1.1 IDEO iSOURCE ADDRESS
7D1213 3GBF 12112124121 LD (Hll,WHITE iPUT OUT 1ST BYTE
7D1215 1112113C 12112125121 LD DE ,1.JIDEO+l iDESTINATION ADDRESS

BYTE
M0 1,1E

7D1218 1211 FF1213 12112125121 LD BC,COUNT iNUMBER OF ITERATIONS
7D121B EDB121 12112127121 LD IR iDO IT TO IT I I I

12112128121
7D121D C9 12112129121 RET iRETURN TO BASIC
7D121121 1211213121121 END ZAP

This routine can he POKEd into RAM and accessed as a L1SR routine. First start BASIC and answer the
MEMORY SIZE question with 31999. Then run the program.

1121121 ' PROGRAM: USRl
11121 ' EXAMPLE OF A USER MACHINE LANGUAGE FUNCTION
115 ' DEPRESS THE '@' KE'/ WHILE NUMBERS ARE PRINTING TO STOP
12121 I

13121 ' ******* POKE MACHINE PROGRAM INTO MEMORY*******
14121 '
1 5121 DEFUSR 1 = &H7D121121
15121 FOR >< = 32121121121 TO 3212113 '7D121121 HEX EQUAL 32121121121 DECIMAL
1 7121 READ A
18121 POKE " ;\ ' A
19121 NEH >~
192 '
194 '******* CLEAR SCREEN & PRINT NUMBERS 1 THRU 1121121 *******
195 '
2121121 CLS
21215 PRINT TAB(15); "WHITE-OUT USER ROUTINE": PRINT

139

----------------··-···-····-··-·--....

TRS-80 MODEL I DISK SYSTEM

210 FOR X = 1 TO 100
2 2 0 P R I NT >I i
225 A$= INkEY$: IF A$="@" THEN END
230 NE>'.T >'.

240 '
250 ' ******* JUMP TO WHITE-OUT SUBROUTINE*******
2G0 '
270 >< = USR1 (0)

280 FOR >< = 1 TO 1000: NE>'.T ><

290 GOTO 200
300 '

'DELAY LOOP

310 ' ******* DATA IS DECIMAL CODE FOR HEX PROGRAM*******
320 '
330 DATA 33 ,0 ,G0 ,54 ,191 tl 7 t1 ,G0 t1 ,255 ,3 ,237 ,17G ,201

Run the program. An equivalent BASIC white out routine takes a long time by comparison!

140

··--------------------------------------

DOUBLE-DENSITY

6/Disk-Related Features
Disk BASIC provides a powerful set of commands, statements and functions
relating to disk 10 under TRSD0S. These fall into two categories:

1. File manipulation: dealing with files as units, rather than with the distinct
records the ti !es contain.

2. File access: preparing data files for uo; reading and writing to the files.

Under the heading, File Manipulation, we will discuss the following
commands.

KILL

LOAD

MERGE

RL:N ·'program··

SAVE

Delete a program or data file from the disk

Load a BASIC program from disk

Merge an ASCII-format BASIC program on disk with one
currently in RAM

Load and execute a BASIC program stored on disk

Save the resident BASIC program on disk

Under the heading, File Access, we will discuss the following statements and
functions.

Statements
OPEN

CLOSE

INPUT#

LINE INPUT#

PRINT#

FIELD

GET

PUT

LSET

RSET

Functions
CVD

CV!

CVS

EOF

Open a file for access (create the file if necessary)

Close access to the file

Read from disk, sequential mode

Read a line of data, sequential mode

Write to disk, sequential mode

Assign field sizes and names to random-access file buffer

Read from disk, random access mode

Write to disk, random access mode

Place value in specified buffer field, add blanb on the
right to fi 11 field

Place value in specified buffer field, add blanks on the left
to fill field

Restore double-precision number to numeric form after
GETting from disk

Restore integer to numeric form after (iETting from disk

Restore single-precision number to numeric form after
GETting from disk

Check to see if end of file encountered during read

141

LOC

LOF

MKD$

MK!$

MKS$

142

---------------···-·--·----

TRS-80 MODEL I DISK SYSTEM

GET current record number.

Return number of last record in file

Convert double-precision number to string so it can be PUT

on disk

Convert integer to string so it can be PUT on disk

Convert single-precision number to string so it can be PUT

on disk

File Manipulation

KILL
Delete a File from the Disk

KILL exp$:d

DOUBLE-DENSITY

exp$ defines a file specification for an existing file.

:dis a drive specification.

This command deletes a specified file. :dis optional, if none is given the file is
deleted from the first diskette that contains the file.

Example

KILL"OLDFILE/BAS,PSWl"

deletes the file specified from the first drive which contains it.

Do not KILL an open file, or you may destroy the contents of the diskette. (First,
CLOSE the open file.)

LOAD
Load BASIC Program File from Disk

LOAD exp$ [.RJ

where exp$ defines a filespec for a BASIC program file stored on disk.

R tells BASIC to RUN the program after It is loaded.

143

------------------·---·-·-··-···· --·-

TRS-80 MODEL I DISK SYSTEM

This command loads a BASIC program file into RAM; if the R option is used,
BASIC will proceed to RUN the program automatically; otherwise, BASIC will
return to the command mode.

LOAD without the R option clears all variables and closes all open files. LOAD

with the R option clears all variables but does not close the open files.

LOAD with the R option is equivalent to the command RUN exp$,R. Either of
these commands can be used inside programs to allow program chaining- one
program calling another, etc.

Example

LOAD"PROG1/BAS:2"

Clears resident BASIC program and loads PROGi/BAS from Drive 2; returns to
BASIC command mode.

MERGE
Merge Disk Program with Resident Program

MERGE exp$

exp$ is file specification for an Asen-format BASIC disk file, e.g., a program
saved with the A-option.

MERGE is similar to LOAD- except that the resident program is not erased before
the new program exp$ is loaded. Instead, the new program is merged into the
resident program.

That is, program lines in exp$ will simply be inserted into the resident program
in sequential order. If line numbers in exp$ coincide with line numbers in the
resident program, the resident lines will be replaced by those from exp$.

144

DOUBLE-DENSITY f ,,1ill
al== '·-~--- .. -' -

Program on Disk Program in Ram
,--------7

Merged Program in Ram

Sample Use

l10

I
L 120 --~- ,

Save this program in ASCII format.

+

1000 REM , , , SUBROUTINE TO SAY HELLO
1010 PRINT "HELLO!"
1020 RETURN

Type NEW (ENTER). then type in this program.

100 CLS
110 PRINT "LET'S CALL THE SUBROUTINE
120 PRINT "DIALING NOW , ,
130 FOR I=l TO 1000 : NEXT
lll0 GOSUB 1000
150 PRINT "BACK FROM SUBROUTINE,"
160 END

I I I

i 10 i
; 20
1--
1 30
I

: 40

I 50

~ I

~

Go ____ l
! 20 I ,-
130 I
, 40
'----~
I 50

60

l 10

90

100

110

; 120

Now type MERGE ''file'' using the file name given to the first file. List the program. Then run it.

RUN''program''
Load and Execute a Progra1n from Disk

RUN exp$[,R]

exp$ is the name of a BASIC program file. It is a string expression. (If a
string constant is used, it must be enclosed in quotes.) The ,R option
causes BASIC to leave open files open. If omitted, open files are
closed before the program is run.

145

'I. TRS-80 MODEL I DISK SYSTEM w~ -~ :-----
This command loads and executes a BASIC program stored on disk. It may be
used inside a program to allow chaining (one program calling another).

Examples
RUN "PROG"

Loads and executes PROG (all open files are closed first).

A$="NEWPROG"
RUN A$, R

Loads and executes NEWPROG (all open files remain open).

SAVE
Save Program onto Disk

SAVE exp$ [.A]

exp$ is the name of a eAs1c program file. It is a string expression.
(If a string constant is used, it must be enclosed in quotes.)

A causes the file to be stored in Ascu rather than compressed format.

This command lets you save your BASIC programs on disk. You can save the
program in compressed or ASCII format.

Using compressed format takes up less disk space and is faster during both
SA VEs and LOADS. Using the ASCJJ option makes it possible to do certain things
that cannot be done with compressed format BASIC files.

For example:

• The MERGE command requires that the disk file be in ASCII form.

• Programs which read in other programs as data will typically require that the
data programs be stored in ASCII.

• The TRSDOS command APPEND also requires that disk files be in ASCII form.

146

Examples

SAt,JE" FI LE 1 /BAS. JOHNQDOE: 3"

saves the resident BASIC program in compressed format with the file name FILE 1,

extension !BAS, password JOHNQDOE; the file is placed on Drive :3.

SA 1.JE"MATHPAK/T>;T" ,A

saves the resident program in ASCII form, using the name MATHPAKITXT, on the
first nonwrite-protected diskette.

Upon completion of a SAVE, BASIC returns in the command mode.

File Access
This section is divided into four parts:

I . Creating files and assigning buffers - OPEN and CLOSE

2. Statements and functions

3. Sequential liO techniques

4. Random uo techniques

If this is your first experience with disk file access, you should concentrate on
parts I, 3 and 4, perhaps just skimming through part 2 to get a general idea of
how the functions and statements work. Later you can go back to part 2 and
learn the details of statement and function syntax.

Creating Files and Assigning Buffers
During the initialization dialog, you type in a number in response to HOW MANY

FILES'? The number you type in tells BASIC how many buffers to create to handle
your disk accesses (reads and writes).

Each buffer is given a number from I to 15. If you type:

HOW MANY FILES? 31,1 (ENTER)

BASIC sets aside 3 buffers, numbered 1,2,3.

You can think of a buffer as a waiting area that data must pass through on the
way to and from the disk file. When you want to access a particular file, you
must tell BASIC which buffer to use in accessing that file. You must also tell
BASIC what kind of access you want-sequential output, sequential input, or
random input/output.

All this is done with the OPEN statement, and "undone" with the CLOSE

statement.

147

TRS-80 MODEL I DISK SYSTEM

OPEN
Open a File

OPEN mode, buffer, exp$, record-length

mode is a string expression containing one of the following:

1 Sequential input starting at the first record. If the file is not found,
an error will occur.

o Sequential output starting at the first record. II the file is not
found, it will be created.

E (Extend) Sequential output starting at end of file. If the file is not
found, an error will occur.

R Random input/output. If the file is not found, it will be created.

If mode is a constant, it must be enclosed in quotes.

buffer is a numeric expression specifying which buffer is to be used.

exp$ is a string expression containing the file specification. If a constant is
used, it must be enclosed in quotes.

record-length is a numeric expression from Oto 256 specifying the logical
record length. O is the same as 256. This option may only be used if
variable-length records were requested during initialization (How
Many Files?). If record-length is omitted, 256 is used. record-length
is used with Random access only.

This statement lets you create a file. write data into it. update it, and read it. For
details on file access. see Methods of Access later in this section.

lffi/e includes a drive specification. BASIC will use only the specified drive. If
no drive is specilied. BASIC will search for a matching tile. starting with the
master drive (usually Drive 0).

Examples
OPEN "O", 1, "DATAFILE"

Opens DATAFILE (creates it if it doesn't already exist) for se4uential output.
Output will be done through buffer# 1. Records will be 256 bytes long. Since
the ··o·· mode is specified. output will start at the first record in the file.
If "E" is used instead of ·•o"'. output will start at the end of the tile.

148

---------------------- ---- - -- -

DOUBLE-DENSITY

OPEN "R", 2, "PAYROLL/A: 1", 84

Opens/creates PA YROLU A for random input/output. Access will be through
buffer #2. Records will be 64 bytes long (if BASIC was initialized for variable
length records).

BUFFER = 3: FILE$ = "DATA": RECLN = 128

OPEN II R II , BUFFER, FI LE$, RECLN

Opens/creates DATA for random input/output. Access will be through buffer #3.
Records will be 128 bytes long (if BASIC was initialized for variable-length
records).

CLOSE
Close Access to the File

CLOSE [nmexp [,nmexp . .. J J

nmexp has a value from 1 to 15, and refers to the file's buffer number
(assigned when the file was opened). If nmexp is omitted, all open
files will be closed.

This command tem1inates access to a file through the specified buffer(s).
If nmexp has not been assigned in a previous OPEN statement, then

CLOSE nmexp

has no effect.

Examples
CLOSE 1 ,2 ,8

Terminates the file assignments to buffers 1, 2 and 8. These buffers can now be
assigned to other files with OPEN statements.

CLOSE FIRST%+COUNT%

Terminates the file assignment to the buffer specified by the sum
(FIRST'7c + COUNT%).

Do not remove a diskette which contains a.file openedfor writing (mode = 0,
E, or R). First close the file. This is because the last 256 bytes of data may not
have been written to disk yet. Closing the file will write the data, if it hasn't
already been written.

149

TRS-80 MODEL I DISK SYSTEM

Any modification to the resident program (NEW, editing, LOAD. MERGE, etc.)
will cause open files to be closed.

INPUT#
Sequential Read from Disk

INPUT# nmexp, var(,var .. . J

where nmexp specifies a sequential input file buffer, nmexp= 1,2, ... , 15.

var is the variable name to contain the data from the file.

This statement inputs data from a disk file. The data is input sequentially.
That is, when the file is first opened, a pointer is set to the beginning of the file.
Each time data is input, the pointer advances. To start over reading from the
beginning of the file, you must close the file and re-open it.

INPUT# doesn't care how the data was placed on the disk- whether a single
PRINT# statement put it there, or whether it required 10 different PRINT#

statements. What matters to INPUT# are the positions of the terminating
characters and the EOF marker.

To INPUT# data successfully from disk, you need to know ahead of time what
the format of the data is. Here is a description of how INPUT# interprets the
various characters it encounters when reading data.

When inputting data into a variable, BASIC ignores leading blanks; when the
first non-blank character is encountered, BASIC assumes it has encountered the
beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The particular terminating characters vary,
depending on whether BASIC is inputting to a numeric or string variable.

Special Note

Here's an important exception to keep in mind in reading the following material.

When (ENTER) (a carriage return) is preceded by~ (a line feed). the (ENTER) is
not taken as a terminator. Instead, it becomes a part of the data item (string
variable) or is simply ignored (numeric variable).

(To enter the ~ character from the keyboard, press the down-arrow character.
To enter the (ENTER) character, press (ENTER).)

150

DOUBLE-DENSITY

This exception applies to all cases noted below where (ENTER) is said to be a
terminator.

Numeric Input

Suppose the data image on disk is

1,234 -33 27 (ENTER)

(ENTER) denotes a carriage-return character (ASCII code decimal 13).

Then the statement

INPUTitl, A ,B ,C

or the sequence of statements

INPUTttl,A: INPUTttl,B: INPUTttl,C

will assign the values as follows:

A= 1.234

B= -33

C=27

This works because blanks and (ENTER) serve as terminators for input to numeric
variables. The blank before 1.234 is a "leading blank," therefore it is ignored.
The blank after 1 .234 is a terminator; therefore BASIC starts inputting the second
variable at the - character, inputs the number - 33, and takes the next two
blanks as terminators. The third input begins at the 2 and ends with the 7.

String Input

When reading data into a string variable. INPUT ignores all leading blanks;
the first non-blank character is taken as the beginning of the data item.

If this first character is a double-quote ("), then INPUT will evaluate the data as
a quoted string: it will read in all subsequent characters up to the next double
quote. Commas, blanks, and (ENTER) characters will be included in the string.
The quotes themselves do not become a part of the string.

If the first character of the string item is not a double-quote, then INPUT will
evaluate the data as an unquoted string: it will read in all subsequent characters
up to the first comma, or (ENTER). If double-quotes are encountered, they will be
included in the string.

For example, if the data on disk is:

PECOS, TEXAS"GOOD MELONS"

Then the statement

INPUTitl, A$,B$,C$

151

TRS-80 MODEL I DISK SYSTEM

would assign values as follows:

A$=PECOS

B$= TEXAS "GOOD MELONS"

C$ = null string

If a comma is inserted in the data image before the first double quote, C$ will
get the value, Gooo MELONS.

These are very simple examples just to give you an idea of how INPUT works.
However, there are many other ways to input data-different terminators,
different target variable types, etc.

Rather than taking a shotgun approach and trying to cover them all. we'll give a
generalized description of how input works and what the terminating characters
and conditions are, and then provide several examples.

When BASIC encounters a terminating character, it scans ahead to see how many
more terminating characters it can include with the first terminator. This ensures
that BASIC will begin looking for the next data item at the correct place.

The list below defines the various terminating sets INPUT# will look for. It will
always try to take-in the largest set possible.

Numeric-input terminator sets

end of file encountered
255th data character encountered
.(comma)
(ENTER)
(ENTER) ~

[...] [(ENTER)]
[...] [~TER) ~]

Quoted-string terminator sets
end of file encountered
255th data character encountered
'' (double quote)
"l ... J[.l
" [...] [(ENTER)]
" [...] [(ENTER)~]

Unquoted-string terminator sets

end of file encountered
255th data character encountered

Figure 8 describes how INPUT# assigns data to a variable.

152

DOUBLE-DENSITY

sTART

IGNORE IT

Figure 8. Input process.

PICKUP THE

TERMINATOR

SET

GET DATA FROM

TEMPORARY

SAVE AREA

NO
PUT IT INTO

TEMPORARY

SAVE AREA

EVALUATE IT
ASSIGN TO

VARIABLE

The following table shows how various data images will be read-in by the
statement:

INPUT#l ,A ,B ,C

Ex.# Image on disk
Values

assigned

1 123,45 (ENTER)~ 8, 2E4 7000(ENTER) A= 123.45
8=82000
C=7000

2 3~(ENTER) 4 (ENTER)5 (ENTER) A 12 eof A=34
B=5
C=0

3 1 , ,2 ,3 ,4 (ENTER) A= 1
B=0
C=2

4 1 ,3, eof A= 1
B=3
C = 0 eof error

(eof end of file):

END

153

TRS-80 MODEL I DISK SYSTEM

In Example 2 above, why does variable c get the value O? When the input
reaches the end of file, it terminates that last data item, which then contains
"A12." This is evaluated by a routine just like the BASIC VAL function-which
returns a zero since the first character of "A12" is a non-numeric.

In Example 3, when INPUT# goes looking for the second data item, it
immediately encounters a terminator (the comma); therefore, variable B is given
the value zero.

The following table shows how various data images on disk will be read by the
statement:

INPUT#l ,A$,5$

Ex.# Image on disk Values assigned

1 "ROBERTS,J,"ROBERTS,M,N eof A$:ROBERTS,J.
B$:ROBERTS,M.N.

2 ROBERTS ,J, , ROBERTS,M,N, (ENTER) A$:ROBERTS
B$:J.

3 THE WORD "QU0",12345,789 (ENTER) A$:THE WORD "QUO"
B$:12345.789

4 BYTE~ (ENTER) UNIT OF MEMORY eof A$:BYTE~(ENTER)
UNIT OF MEMORY
B$:null (eof error)

In Example 3, the first data item is an unquoted string, therefore, the double
quotes are not terminators, and become part of A$.

In Example 4, the (ENTER) is preceded by an~. therefore it does not terminate
the first string; both ~ and (ENTER) are included in A$.

LINE INPUT#
Read a Line of Text from Disk

154

LINE INPUT#nmexp, var$
where nmexp specifies a sequential output file buffer, nmexp= 1,2, ... , 15.

var$ is the variable name to contain the string data.

--------------------- ------------- ----------------

Similar to LINE INPUT from keyboard, this statement reads a "line" of string
data into var$. This is useful when you want to read an ASCII-format BASIC
program file as data, or when you want to read in data without following the
usual restrictions regarding leading characters and terminators.

LINE INPUT (or LINEINPUT- the space is optional) reads everything from the first
character up to:

1. an (ENTER) character which is not preceded by ~

2. the end of file

3. the 255th data character (this 255 character is included in the string)

Other characters encountered - quotes. commas. leading blanks. ~ (ENTER)
pairs - are included in the string.

For example, if the data looks like:

10 CLEAR 500 (ENTER)
20 OPEN II I 11

, 1, "PROG 11 (ENTER)

then the statement

LINEINPLJT#l ,A$

could be used repetitively to read each program line, one line at a time.

PRINT#
Sequential Write to Disk File

PRINT#nmexp,[us1NG format$;] exp[p exp . ..]

where nmexp specifies a sequential output file buffer, nmexp= 1,2, ... , 15.

format$ Is a sequence of field specifiers used with the us1NG option.

p is a delimiter placed between every two expressions to be PRINTed to disk;
either a semi-colon or comma can be used (semi-colon is preferable).

exp is the expression to be evaluated and written to disk.

This statement writes data sequentially to the specified file. When you first open
a file for sequential output, a pointer is set to the beginning of the file. therefore

155

~ TRS-80 MODEL I DISK SYSTEM

--
your first PRINT# places data at the beginning of the file. At the end of each
PRINT# operation, the pointer advances, so the values are written in sequence.

A PRINT# statement creates a disk image similar to what a PRINT to display
creates on the screen. Remember this, and you'll be able to set up your PRINT#

list correctly for access by one or more INPUT statements.

PRINT# does not compress the data before writing it to disk; it writes an ASCII

coded image of the data.

For example, if A= 123.45

PRINT#l ,A

will write a nine-byte character sequence onto disk:

123. 45 (ENTER)

The punctuation in the PRINT list is very important. Unquoted commas and semi
colons have the same effect as they do in regular PRINT to display statements.

For example, if A= 2300 and B = 1303, then

PRINT#l,A,B

places the data on disk as

2300 1 , 303 (ENTER)

The comma between A and B in the PRINT# list causes 10 extra spaces in the
disk file. Generally you wouldn't want to use up disk space this way, so you
should use semi-colons instead of commas.

PRINT#l ,AiB

writes the data as:

2300 1,303 (ENTER)

PRINT# with numeric data is quite straightforward- just remember to separate
the items with semi-colons.

PRINT# with string data requires more care, primarily because you have to insert
delimiters so the data can be read back correctly. In particular, you must
separate string items with explicit delimiters if you want to INPUT# them as
distinct strings.

For example, suppose:

A$="JOHN Q, DOE" and 5$="100-01-001"

Then:

PRINT#l, A$ iB$

would produce this image on disk:

156

JOHN Q, DOE111ll1l-11l1-11ll1l1 (ENTER)

which could not be INPUT back into two variables.

The statement:

PRINTttl, A$j","jB$

would produce:

JOHN Q, DOE, 111ll1l-11l1-11ll1l1

which could be INPUT# back into two variables.

DOUBLE-DENSITY

This method is adequate if the string data contains no delimiters - commas or
(ENTE_ID-characters. But if the data does contain delimiters or leading blanks
that you don't want to ignore, then you must supply explicit quotes to be written
along with the data. For example, suppose A$=" DOE, JOHN Q," and B$=" 1 IZllZl
- IZl 1 - IZllZl 1 "

If you use

PRINTtt1 ,A$j" ,"iB$

the disk image will be:

DOE, JOHN Q, ,111ll1l-11l1-11ll1l1 (ENTER)

When you try to input this with a statement like

INPUTtt2,A$,B$

A$ will get the value DOE, and B$ will get JOHN Q. - because of the comma after
DOE in the disk image.

To write this data so that it can be input correctly, you must use the CHR$

function to insert explicit double quotes into the disk image. Since 34 is the
decimal ASCII code for double quotes, use CHR$(34) as follows:

PRINTtt1 ,CHR$(3ll) jA$jCHR$(3ll) iB$

this produces the disk image

"DOE, JOHN Q,"111ll1l-11l1-11ll1l1 (ENTER)

which can be read with a simple

INPUTtt2,AB

Note: You can also use the CHR$ function to insert other delimiters and control
codes into the file, for example:

CHR$(101 ~ Line Feed
CHR$(t 3 l carriage return ((ENTER)character)
CHR$(111 or CHR$(12) line-printer top-of-form

·-~-----------···----- ----

157

TRS-80 MODEL I DISK SYSTEM

USING Option
This option makes it easy to write files in a carefully controlled format.

For example, suppose:

A$="LUDWIG"
5$="!.JAN"
C$ = "BEETHC:H.JEN"

Then the statement

PRINT#l ,USING" I+ I+ '1,, i.," iA$ iB$ iC$

would write the data in nickname form:

L. 1,1. BEET <ENTER>

(In this case. we didn't want to add any explicit delimiters.) See the PRINT USING

description in the Lt.VEL 11 BASIC Reference Manual for a complete explanation of
the field-specifiers.

Random Access Statements

FIELD
Organize a Random File-Buffer into Fields

158

FIELD nmexp,nmexp1 Asvar1$ [,nmexp2 AS var2$. ..]

nmexp specifies a random access file buffer, nmexp= 1,2, ... , 15.

nmexp1 specifies the length of the first field.

var1$ defines a variable name for the first field.

nmexp2 specifies the length of the second field.

var2$ defines a variable name for the second field .

. . . Subsequent nmexp As var$ pairs define other fields in the buffer.

Note: The sum of all the field-lengths must not exceed the record length, and
should equal the record length.

DOUBLE-DENSITY

Before FIELDing a buffer, you must use an OPEN statement to assign that buffer
to a particular disk file (you must use random access mode). Then use the FIELD
statement to organize a random file buffer so that you can pass data from BASIC
to disk storage and vice-versa.

Each random file buff er has up to 256 bytes which can store data for transfer
from disk storage to BASIC or from BASIC to disk. (When variable-length files are
used. maximum may be from I to 256.) However. you need a way to access this
buffer from BASIC so that you can either read the data it contains or place new
data in it. The FIELD statement provides the means of access.

You may use the FIELD statement any number of times to "re-organize" a file
buffer. FIELDing a buffer does not clear the contents of the buffer: only the
means of accessing the buffer (the field names) are changed. Furthermore, two
or more field names can reference the same area of the buffer.

Examples

FIELD 11 128 AS A$1 128 AS B$

This statement tells BASIC to assign the first 128 bytes of the buffer to the string
variable A$ and the remaining 128 bytes to B$. If you now print A$ and B$, you
will see the contents of the buffer. Of course, this value would be meaningless
unless you have used GET to read a 256-byte record from disk.

Note: All data-both strings and numbers-must be placed into the buffer in
string form. There are three pairs of functions (MKI$1CVI.MKS$1cvs,MKD$1CVD)
for converting numbers to strings and vice-versa. See "Functions" below.

FIELD 31 16 AS NM$, 25 AS AD$, 10 AS CY$, 2 AS ST$,7 AS ZP$

The first I 6 bytes of buffer 3 are assigned the buffer name NMS: the next 25,
AD$; the next 10, CYS; the next 2, sn and the next 7. ZP$. The remaining I 96
bytes of the buffer are not fielded at all.

More on field names

Field names. like NM$.AD$.CYS,ST$, and ZPS, are not string variables in the
ordinary sense. They do not consume the string space available to BASIC.

Instead, they point to the buffer field which you assigned with the FIELD
statement. That's why you can use:

100 FI ELD 1 ,255 AS A$

without worrying about whether 255 bytes of string space are available for A$.

If you use a buffer field name on the left side of an ordinary assignment
statement, that name will no longer point to the buffer field: therefore. you
won't be able to access that field using the previous field name.

159

~ TRS-80 MODEL I DISK SYSTEM

\si!: -; _ _.

For example,

A$=B$

nullifies the effect of the FIELD statement above (line 100).

During random input, the GET statement places data into the 255-byte buffer,
where it can be accessed using the field names assigned to that buffer. During
random output, LSET and RSET place data into the buffer, so you can then PUT

the buffer contents into a disk file.

Often you'll want to use a dummy variable in a FIELD statement to "pass
over" a portion of the buffer and start fielding it somewhere in the middle.
For example:

FIELD 1, 1G AS CLIENT$(1), 112 AS HIST$(1)
FIELD 1, 128 AS DUMMY$, 1G AS CLIENT$(2), 112 AS HIST$(2)

In the second FIELD statement, DUMMY$ serves to move the starting position of
CLIENT$(2) to position 129. In this manner, two identical "subrecords" are
defined on buffer number l. We won't actually use DUMMY$ to place data into
the buffer or retrieve it from the buffer.

The buffer now looks like this:

I 16 I

CL$
(1)

112

HIST$
(1)

DUMMY$

16

CL$
(2)

112

HIST$
(2)

GET
Read a Record from Disk-Random Access

160

GET nmexp1[,nmexp2)

nmexp1 specifies a random access file buffer, nmexp1 = 1,2, ... , 15.

nmexp2 specifies which record to GET in the file; if omitted, the current
record will be read.

. ---------·--- --·-------··· -----~-------------------------------· -----------.----

DOUBLE-DENSITY

This statement gets a data record from a disk file and places it in the specified
buffer. Before GETting data from a file, you must open the file and assign a
buffer to it. That is, a statement like:

OPEN "R" .nmexpl ,filespec

is required before the statement:

GET nmexpl ,nmexp2

GET tells BASIC to read record nmexp2 from the file and place it into the nmexpl
buffer. If you omit the record number in GET, BASIC will read the current record.

The "current record" is the record whose number is one higher than that of the
last record accessed. The first time you acce~s a file via a particular buffer. the
current record is set equal to I .

For example:

Program statement
1000 OPEN"R", l ,"NAME;BAS ..

1010 FIELD I...

1020 GET I

1025 REM .. ACCESS BUFFER

1030 GET 1,30

1035 REM ... ACCESS BUFFER

1040 GET 1.25

1046 REM ... ACCESS BUFFER

1050 GET!

Effect
Open NAME>BAS for random access

using buffer 1

Structure buffer

GET record 1 into buffer I

GET record 30 into buffer I

GET record 25 into buffer I

GET record 26 into buffer I

If you are using variable-length records (not fixed-length), an attempt to C,ET

past the end of file will produce an error.

If you are using fixed-length records, the same attempt will return a null record
and no error will occur. To prevent this from occurring, you can use the LOF

function to determine the number of the highest numbered record.

PUT
Write a Record to Disk-Random Access

PUT nmexp1[,nmexp2]

nmexp,1 specifies a random access file buffer, nmexp=1,2, ... ,15.

161

TRS-80 MODEL I DISK SYSTEM

nmexp2 specifies the record number in the file, nmexp2 is the record you
want to write. If nmexp2 is omitted, the current record number is
assumed.

This statement moves data from a file's buffer into a specified place in the file.
Before PUTting data in a file, you must:

I. OPEN the file. thereby assigning a buffer and defining the access mode
(must be R);

2. FIELD the buffer, so you can

3. place data into the buffer with LSET and RSET statements.

When BASIC encounters the statement:

PUT nmexp,nmexp2

it does the following:

• Gets the information needed to access the disk file

• Checks the access mode for this buffer (must be R)

• Acquires more disk space for the file if necessary to accommodate the record
indicated by nmexp2

• Copies the buffer contents into the specified record of the disk file

• Updates the current record number to equal nmexp2 + I

The "current record" is the record whose number is one higher than the last
record accessed. The first time you access a file via a particular buffer, the
current record is set equal to I .

If the record number you PUT is higher than the end-of-file record number, then
nmexp2 becomes the new end-of-file record number.

LSET and RSET
Place Data in a Random Buffer Field

162

LSET var$ = exp$ and RSET var$= exp$

var$ is a field name.

exp$ contains the data to be placed in the buffer field named by var$.

-----·· ------·--------------

DOUBLE-DENSITY

These two statements let you place character-string data into fields previously
set up by a FIELD statement.

For example, suppose NM$ and AD$ have been defined as field names for a
random file buffer. NM$ has a length of 18 characters, and AD$ has a length of
25 characters.

Now we want to place the following information into the buffer fields so it can
be written to disk:

name:
address:

JIM CRICKET, JR,
2000 EAST PECAN ST,

This is accomplished with the two statements:

LSET NM$= 11 JIM CRICKET,JR, 11

LSET AD$= 11 2000 EAST PECAN ST, 11

This puts the data in the buffer as follows:
I JIM CRICKET , JR , I l,-----2-0_0_0_E_A_S_T _P E_C_A_N_S_T-.---~

NM$ AD$

Note that filler spaces were placed to the right of the data strings in both cases.
If we had used RSET instead of LSET statements, the filler spaces would have
been placed on the left. This is the only difference between LSET and RSET.

For example:

RSET NM$= 11 JIM CRICKET,JR, 11

RSET AD$= 11 2000 EAST PECAN ST, 11

places data in the fields as follows:

I JIM CRICKET,JR, I

NM$

2000 EAST PECAN ST, I

AD$

If a string item is too large to fit in the specified buffer field, it is always
truncated on the right. That is, the extra characters on the right are ignored.

CVD, CVI and CVS
Restore String to Numeric Form

cvo(exp$)

exp$ defines an eight-character string; exp$ is typically the name of a
buffer field containing a numeric string. If LEN(exp$)<B, an ILLEGAL

163

cv1(exp$)

FUNCTION CALL error occurs; if LEN(exp$)>8, only the first eight
characters are used.

exp$ defines a two-character string; exp$ is typically the name of a buffer
field containing a numeric string. If LEN(exp$)<2, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>2, only the first two characters are
used.

cvs(exp$)

exp$ defines a four-character string; exp$ is typically the name of a buffer
field containing a numeric string. If LEN(exp$)<4, an ILLEGAL FUNCTION
CALL error occurs; if LEN(exp$)>4, only the first four characters are
used.

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement. and is stored in a random
access file buffer.

The functions CVD, CVI, and CVS are inverses of MKDS, MKIS, and MKS$,
respectively.

For example, suppose the name GROSSPA Y$ references an eight-byte field in
a random-access file buffer, and after GETting a record, GROSSPA Y$ contains a
MKD$ representation of the number 13123. 38.

Then the statement:

PRINT CVDIGROSSPAYSl-TAXES

prints the result of the difference, 13123. 38 - TAXES. Whereas the statement:

PRINT GROSSPAYS-TAXES

will produce a TYPE MISMATCH error, since string values cannot be used in
arithmetic expressions.

Using the same example, the statement

A#=CVDIGROSSPAYSl

assigns the numeric value 13123.38 to the double-precision variable A#.

164

EOF
End-Of-File Detector

EOF(nmexp)

nmexp specifies a file buffer, nmexp= 1,2, ... , 15.

This function checks to see whether all characters up to the end-of-tile marker
have been accessed, so you can avoid INPUT PAST END errors during sequential
input.

Assuming nmexp specifies an open file, then EOF(nm exp) returns O (false) when
the EOF record has not yet been read, and - 1 (true) when it has been read.

Examples

IF EOF(5) THEN PRINT"END OF FILE"FILENM$
IF EOF(NMZ) THEN CLOSE NM%

The following sequence of lines reads numeric data from DATAITXT into the
array A(). When the last data character in the file is read, the EOF test in line
30 "passes," so the program branches out of the disk access loop, preventing
an INPUT PAST END error from occurring. Also note that the variable I contains
the number of elements input into array A().

5 DIM A(100) 'ASSUMING THIS IS A SAFE VALUE
10 OPEN "I" ,1, "DATA/T>(T"
20 Io/.,=0
30 IF EOF(1) THEN 70
40 I NP Unit ,A (I'X.)
50 I'l.,=I'l.,+1
60 GOTO 30
70 REM PROGRAM CONTINUES HERE AFTER DISK INPUT

165

TRS-80 MODEL I DISK SYSTEM

LOC
Get Current Record Number

Loc(file number)

file number is a numeric expression specifying the buffer for a currently
open file.

LOC is used to determine the current record number, i.e .. the number of the last
record read since the tile was opened. LOC is only valid after a GET.

Example
PR I NT LOC (1)

Sample Program

1311/l A$ = "WILLIAM WILSON"
1321/l GET 1, X: X=X+1
1331/l IF N$ = A$ THEN PRINT "FOUND IN RECORD" LOC(1): CLOSE:

END
13lll2l GOTO 1321/l

This is a portion of a program. Elsewhere the file has been opened and fielded.
N$ is a field variable. If N$ matches AS the record number in which it was found
is printed.

LOF
Get End-Of-File Record Number

LOF(nmexp)

nmexpspecifies a random access buffer nmexp=1,2, ... ,15.

166

DOUBLE-DENSITY

This !unction tells you the numher of the last. i.e .. highest nurnhered. record
in a tile. It is useful for hoth sequential and random access.

for exarnple. during randorn access to a pre-existing tile. you often need a
way to know when you·ve read the last valid record. 1.01- provides a way.

1.rn is \alid as soon as a previously created tile i!-> opened. If a tile is extended.
1.rn is not valid until a Cil·T is executed.

Examples:

10 OPEN "R" ,1,"UNKNOWN/T;<T"
::'0 FIELD 1 ,::'55 AS A$
30 FORI%=1 TO LOF(l)
40 GET 1 , IX.
50 PRINT A$
80 NE;<T

In line 30. 1rn, 11 specifics the highest record nurnher to he accessed.

Note: If you attempt to Ci IT record nurnhers beyond the end-of-tile record. BASIC

sirnply tilb the huffcr with hexadecimal zeros. and no error is generated.

When you want to add to the end of a tile. LOI· tells you where to start adding:

100 I%=LOFl1)+1 HIGHEST EXISTING RECORD
110 PUT 1 , I'X. 'ADD NE/T RECORD

MKD$, MKI$, and MKS$
Convert Data, Numeric-to-String

MKDs(nmexp)

nmexp is evaluated as a double-precision number.

MKIS(nmexp)

nmexp is evaluated as an integer, -32768< = nmexp<32768; if nmexp
exceeds this range, an ILLEGAL FUNCTION CALL error occurs. Any
fractional component in nmexp is truncated.

MKss(nmexp)

nmexp is evaluated as a single-precision number.

167

tOill. · . TRS-80 MODEL I DISK SYSTEM .,,
·.~ -
These functions change a number to a ''string.'' Actually the byte values which
make up the number are not changed; only one byte, the internal data-type
specifier, is changed, so that numeric data can be placed in a string variable.

That is:

MKD$ returns an eight-byte string.
MK!$ returns a two-byte string.
MKSS returns a four-byte string.

Examples

LSET TALLYS=MKIS(I%l

Field name TALLY$ would now contain a two-byte representation of the
integer 1,1,.

AS=MK l$ (8/I l

A$ becomes a two-byte representation of the integer portion of s;r. Any
fractional portion is ignored. Note that AS in this case is a normal string
variable, not a buffer-field name.

Suppose BASEBALL/HAT (a non-standard file extension) has been opened for
random access using buffer 2, and the buffer has been FIELDed as follows:

field:
length:

NMS
16

YRS$
2

AVG$
4

HRS
2

AB$
4

ERNING$
4

NM$ is intended to hold a character string; AVG$, AB$ and ERNING$, converted
single-precision values; YRS$ and HR$, converted integers.

Suppose we want to write the following data record:

SLOW LEARNER played 38 years; lifetime batting average . 123;
career homeruns, 11: at bats, 32768; ... ,earnings - 13.75.

Then we'd use the make-string functions as follows:

112)12)12) LSET NMS="SLOW LEARNER"
112) 112) LSET YRSS=MKI$(38l
112)212) LSET Al.JGS=MKS$(+ 123)
112)312) LSET HRS=MKIS(11l
112)412) LSET ABS=MKS$(32788)
112)512) LSET ERNINGS=MKSS(-13,75)

After this sequence, you can write SLOW LEARNER's information to disk with
the PUT statement. When you read it back from disk with GET, you will need
to restore the numeric data from string to numeric form, using cvr and cvs
functions.

168

--------------------------·-----·-·-·--------------

DOUBLE-DENSITY

Methods of Access
Disk BASIC provides two means of file access:

• Sequential~- in which you start reading or writing data at the beginning of
a file: subsequent reads or writes are done at following positions in the file.

• Random - in which you start reading or writing at any record you specify.
(Random access is also called direct access.)

Sequential access is stream-oriented: that is. the number of characters read or
written can vary. and is usually determined by delimiters in the data. Random
access is record-oriented: that is. data is always read or written in lixed-length
blocks called records.

To do any input/output to a disk file. you must first open the tile. When you
open the file. you specify what kind of access you want:

• o for sequential output

• 1 for sequential input

• R for random input/output

• E (Extend) for sequential output starting at the end of file.

You also assign a file buffer for BASIC to use during file accesses. This number
can be from I to 15. but must not exceed the number of concurrent tiles you
requested when you started BASIC from TRSDOS. For example. if you started
BASIC with 3 tiles. you can use buffer numbers 1. 2. and 3. Once you assign a
buffer number to a file. you cannot assign that number to another tile until you
Close the first file.

Examples

OPEN "O", 1, "TEST"

Creates a sequential output file named TEST on the first available drive: if TIST

already exists. its previous contents are lost. Buffer I will be used for this file.

OPEN "I", 2, "TEST"

Opens TEST for sequential input. using buffer 2.

OPEN "R", 1, "TEST"

Opens TEST for direct access. using buffer I. If TEST does not exist. it will be
created on the first available drive. Since record length is not specified. 256-byte
records will be used.

OPEN "R", 1, "TEST", 4IZI

Same as preceding example. but 40-byte records will be used.

OPEN "E", 1, "TEST"

Opens TEST sequentially for write and positions to EOF.

169

170

Sequential Access
This is the simplest way to store data in and retrieve it from a file. It is ideal for
storing free-form data without wasting space between data items. You read the
items back in the same order in which they were written.

There are several important points to keep in mind.

I. You must start writing at the beginning of the file. If the data you are seeking
is somewhere inside, you have to read your way up to it.

2. Each time you Open a file for sequential output, the file's previous contents
are lost, unless you use "E" instead of "O" for the mode.

3. To update (change) a sequential file, read in the file and write out the updated
data to a new output file.

4. Data written sequentially usually includes delimiters (markers) to signify
where each data item begins and ends. To read a file sequentially, you must
know ahead of time the format of the data. For example: Does the file consist
of lines of text terminated with carriage returns? Does it consist of numbers
separated by blank spaces? Does it consist of alternating text and numeric
information?

5. Sequential files are always written as ASCII-coded text, one byte for each
character of data. For example, the number:

1,23ll5

requires 8 bytes of disk storage, including the leading and trailing blanks that
are supplied. The text string:

JOHNSON, ROBERT
requires 15 bytes of disk storage.

6. Sequential files are always written with a record length of 256.

Sequential Output: An Example
Suppose we want to store a table of English-to-metric conversion constants:

English unit Metric equivalent

1 inch 2.54001 centimeters
1 mile 1.60935 kilometers
1 acre 4046.86 sq. meters
1 cubic inch 0.01638716 liter
1 U.S. gallon 3. 785 liters
1 liquid quart 0.9463 liter
1 lb (avoir) 0.45359 kilogram

171

~ail TRS-80 MODEL I DISK SYSTEM
~-G0~-·<':'.~---

-~

First we decide what the data image is going to be. Let's say we want it to look
like this:

English unit• metric unit, f<Jetor (ENTER)

For example, the stored data would start out:

IN->CM, 2,54001 (ENTER)

The following program will create such a data file.

Note: x·oo· represents a carriage return.

10 OPEN "O" ,1 ,"METRIC/T>(T"
20 FOR I'Y.,= 1 TO 7
30 READ UNIT$, FACTR
lllZl PRINT#l, UNIT$; ","; FACTR
5121 NE>\T
GIZl CLOSE
70 DATA IN->CM, 2,5l11Zl1Zl1, MI->KM, 1,80935, ACRE->SO,KM,

lllZlllG.88 E-8
BIZ! DATA CU,IN->LTR, 1.G3871GE-2, GAL->LTR, 3,785
90 DATA LIO,OT->LTR, 1Zl,9l183, LB->KG, IZl,45359

Line 10 creates a disk file named METRIC!TXT, and assigns buffer I for sequential
output to that file. The extension iTXT is used because sequential output always
stores the data as ASCII-coded text.

Note: If METRICTXT already exists, line 10 will cause all its data to be lost.
Here's why: Whenever a file is opened for sequential output, the end-of-file
(EOF) is set to the beginning of the file. In effect, TRsoos "forgets" that
anything has ever been written beyond this point. To avoid this, you could use E
instead of o in line 10.

Line 40 prints the current contents of UNIT$ and FACTR to the file. Since the
string items do not contain delimiters, it is not necessary to print explicit quotes
around them. The explicit comma is sufficient.

Line 60 closes the file. The EOI-' is at the end of the last data item, i.e., 0.45359,
so that later, during input, BASIC will know when it has read all the data.

Sequential Input: An Example
The following program reads the data from METRICTXT into two "parallel"
arrays, then asks you to enter a conversion problem.

5 CLEAR 500
10 DIM UNIT$(9), FACTR(9)
20 OPEN"I" ,1 ,"METRIC/T;<T"
25 Io/.,= IZl
30 IF EOF(1) THEN 70

172

'allows for UP to 10 data Pairs

·--····· -------------------

40 INPUT:111, UNIT$(I'X,l ,FACTR(I'X,l

50 I'X,=I'X.+1
60 GOTO 30

DOUBLE-DENSITY

70 CLOSE Conversion factors haue been read-in
100 CLS: PRINT TAB(5)"*** En9'lish to Metric Cont.iersions ***"
110 FOR ITEM%=0 TO I%-1
120 PRINT TAB(8liUSING"(:1111 'X, '1., "iITEM'1.,,

UN IT$ (ITEM'X, l
130 ND'.T
140 PRINT@ 704, "Which cont.iersion (0-6)"i
150 INPUT CHOICE%
160 INPUT"Enter En9'lish 91.1antitl'"il,1
170 PRINT"The Metric e91.1it.ialent is" l,l*FACTR(CHOICE'X,)
180 INPUT"Press <ENTER> to continue" i)<
190 PRINT@ 704, CHR$(31) 'clear to end of frame
200 GOTO 140

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn't been reached. If it has.
control branches from the disk input loop to the part of the program that uses
the newly acquired data.

Line 40 reads a value into the string array UNITS(), and a number into the
single-precision array FACTR(). Note that this INPCT list parallels the PRINT# list
that created the data file (see the section .. Sequential Output: An Example").
This parallelism is not required. however. We could just as successfully have
used:

40 INPUT#l, UNIH(I'X.l: INPUT:111,FACTR(I'X.l

How to update a file
Suppose you want to add more entries into the English-Metric conversion file.
You could simply re-Open the file with mode = E and PRl'.'iT# the extra data.
Or. you might want to leave the old file intact and output a new file:

I. Open the file for sequential input (Mode = 1)

2. Open another new data file for sequential output (Mode o)

3. Input a block of data and update the data as necessary

4. Output the data to the new file

5. Repeat steps 3 and 4 until all data has been read. updated. and output to the
new tile: then go to step 6

6. Close both files

173

TRS-80 MODEL I DISK SYSTEM

Sequential Line Input: An Example
Using the line-oriented input, you can write programs that edit other BASIC

program files: renumber them, change LPRINTS to PRINTS, etc. -as long as these
"target" programs are stored in ASCII format.

The following program counts the number of lines in any ASCII - format BASIC

disk file with the extension 1TXT.

1 IZ) CLEAR 31Z)IZ)
211) INPUT"WHAT IS THE NAME OF THE PROGRAM"; PROG$
311) IF INSTR (PROG$ t" /T)<T") =IZ! THEN 1111) 're9uire /TXT extension
L!IZ) OPEN"!" t 1 t PROG$
511) I '7., = IZ)

GIZ! IF EOF (1) THEN 811)
711) I'l.,=Io/.,+1: LINE INPUT#l t TEMP$
BIZ! GOTO GIZ!
811) PRINT PROG$" IS" I'7.. "LINES LONG,"
11Z!IZ! CLOSE: GOTO 20
110 PRINT "FILESPEC MUST INCLUDE THE E>(TENSION '/T\<T'"
120 GOTO 20

For BASIC programs stored in ASCII, each program line ends with a carriage
return character not preceded by a line feed. So the LINE INPUT in line 70
automatically reads one entire line at a time, into the variable TEMP$. Variable
1'7, actually does the counting.

To try out the program, first save any BASIC program using the A (ASCII) option
(See SA VE). Use the extension 1TXT.

174

DOUBLE-DENSITY

Random Access Techniques
Random access offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file, you can read any
record you specify.

• To update a tile. you don't have to read in the entire tile. update the data. and
write it out again. You can rewrite or add to any record you choose. without
having to go through any of the other records.

• Random access is more efficient- data takes up less space and is read and
written faster.

• Opening a tile for direct access allows you to write and read from the file via
the same buffer.

• Random access provides many powerful statements and functions to structure
your data. Once you have set up the structure. direct input/output becomes
quite simple.

The last advantage listed above is also the "'hard part" of direct access. It takes
a little extra thought.

For the purposes of direct access, you can think of a disk tile as a set of boxes
- like a wall of post-office boxes. Just like the post office receptacles. the file
boxes are numbered. We call these boxes "records."

You can place data in any record. or read the contents of any record, with
statements like:

PUT 1 , 5 write buffer- I contents to record 5
GET 1 , 5 read the contents of record 5 into buffer- I

(256)
BYTES

(256)
BYTES

(256)
BYTES

(256)
BYTES (J~)

#6 #7 :/#3 #9 #10

(256)
BYTES

(256)
BYTES

(256)
BYTES

(256)
BYTES ~8

"PUT1 5" 2~ "---- , ------ IS'YTES

#1 #2 #3 #4 #5 ~"GET 1,5" ~ #1

256)
BYTES

#2

)

\
f

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

Figure 9. GET and PUT.

175

-------------·--· ·-········

TRS-80 MODEL I DISK SYSTEM

The huller is a waiting area for the data. Before writing data to a file. you must
place it in the huffcr assigned to the tile. After reading data from a file, you
must retricw it from the huffer.

As you can see from the sample PCT and C,ET statements above. data is passed to
and from the disk in records. The size of each record is determined by an Open
statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents into
the disk tile.

This is accomplished hy I) dividing the buffer up into fields and naming them,
then 2) placing the string or numeric data into the fields.

For example. suppose we want to store a glossary on disk. Each record will
consist of a word followed hy its definition. We start with:

111)11) OPEN II R 11
, 1 , 11 GLOSSARY /BAS 11

110 FIELD 1, 1G AS WO$, 240 AS MEANING$

Linc I 00 opens a file named GLOSSARY BAS (creates it if it doesn't already exist):
and gives buffer I direct access to the file.

Line 110 defines two fields onto buffer I:

WDS consists of the first 16 bytes of the buffer:
~1EANI'-iG$ consists of the last 240 bytes.

WDS and t-.1EA'-iINGi> are now field-names

What makes field names different? Most string variables point to an area in
memory called the string space. This is where the value of the string is stored.

Field names. on the other hand. point to the buffer area assigned in the FIELD

statement. So. for example. the statement:

10 PRINT WO$; 11
:

11
; MEANrnG$

displays the contents of the two huffer fields defined above.

These values are meaningless unless we first place data in the buffer. LSET. RSET

and c;ET can all be used to accomplish this function. We'll start with LSET and
RSET. which are used in preparation for disk output.

Our first entry is the word '·left-justify .. followed by its definition.

111)11) OPEN II R 11
, 1 , 11 GLOSSARY /BAS 11

110 FIELD 1, 1G AS WO$, 240 AS MEANING$
120 LSET WD$= 11 LEFT-JUSTIFY 11

130 LSET MEANINC$= 11 TO PLACE A 1.JALUE IN A FIELD FROM LEFT TO

176

----------···· ---------------------

DOUBLE-DENSITY

RIGHT; IF THE DATA DOESN'T FILL THE FIELD, BLANKS ARE
ADDED ON THE RIGHT; IF THE DATA IS TOO LONG, THE EXTRA
CHARACTERS ON THE RIGHT ARE IGNORED, LSET IS A LEFT
JUSTIFY FUNCTION,"

Line 120 left-justifies the value in quotes into the first field in buffer I. Line 130
does the same thing to its quoted string.

Note: RSET would place filler-blanks to the left of the item. Truncation would
still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple PUT

statement:

140 PUT 1 ,1

150 CLOSE

This writes the first record into the file GLOSSARYRAS.

To read and print the first record in GLOSSARY BAS, use the following sequence:

1G0 OPEN"R", 1, "GLOSSARY/BAS"
170 FIELD 1, lG AS WD$, 240 AS MEANING$
180GET1,1
180 PRINT WD$: PRINT MEANING$
200 CLOSE

Line 160 and 170 are required only because we closed the file in line 150. If we
hadn't closed it, we could go directly to line 180.

177

178

-------------------------- - -----------

DOUBLE-DENSITY

Random Access: A General
Procedure
The previous example shows the necessary sequences to read and write using
random access. But it does not demonstrate the primary advantages of this form
of access - in particular, it doesn't show how to update existing files by going
directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example to show
some of the techniques of random access for file maintenance. But before
looking at the program, study this general procedure for creating and
maintaining files via random access.

Step
See GLOSSACC/BAS,

Line Number

1. Open the file
2. Field the buffer
3. Get the record to be updated
4. Display current contents of the record (use

CVD, CVI, CVS before displaying numeric
data)

5. LSET and RSET new values into the fields
(use MKD$, MK!$, MKS$ with numeric data
before setting it into the buffer)

6. PUT the updated record
7. To update another record, continue at step 3.

Otherwise, go to step 8.
8. Close the file

10 REM , ♦♦♦♦♦ GLOSSACC/BAS ♦♦♦

100 CLS : CLEAR 300
110 OPEN "R", 1, "GLOSSARY /BAS"

110
120
140

145-170

210-230

240
250-260

270

120 FIELD 1, 16 AS WDS, 238 AS MEANINGS, 2 AS NXS
130 INPUT "WHAT RECORD DO YOU WANT TO ACCESS"; R'X.
140 GET 1 , R'X,
145
150
160
170
180

N)<i.', =
PRINT
PRINT
PRINT
WS =
WS

Ct.JI(N)<S) 'SAl,IE LINK TO NE)<T ALPHABETICAL
"WORD : "WDS
"DEF'N : " : PRINT MEANINGS
"NE>(T ALPHABETICAL ENTRY: RECORD #: II N)<'X, :

INPUT "TYPE NEW WORD <ENTER> OR <ENTER>

ENTRY

PRINT
IF OK";

180 DS = "" PRINT "TYPE NEW DEF 'N <ENTER> OR <ENTER> IF
OK?"

200 INPUT
210 IF ws

: LINE INPUT D$
"TYPE NEW SEQUENCE NUMBER OR <ENTER> IF OK"i N)<'X,

"" THEN LSET WDS = WS

179

TRS-80 MODEL I DISK SYSTEM

2212) IF D$ 1111 THEN LSET MEANING$= D$

230 LSET NX$ = MKI$ (NX%l
2ll1Zl PUT 1 t R'X,
2ll5 R% = NX% 'USE NEXT ALPHA, LINK AS DEFAULT FOR NEXT RECORD
2512) CLS : PRINT " TYPE <ENTER> TO READ NE>(T ALPHA, ENTRY 111

:

PRINT" OR RECORD :11 <ENTER> FOR SPECIFIC ENTRY1": INPUT"
OR 12) <ENTER> TO QUIT"; Ro/.,

2512) IF 12) <R'i:', THEN 1 l!IZ)

2712) CLOSE
280 END

Notice we've added a field, NX$, to the record (line 120). NX$ will contain the
number of the record which comes next in alphabetical sequence. This enables
us to proceed alphabetically through the glossary, provided we know which
record contains the entry which should come first.

For example, suppose the glossary contains:

record# word (WO$) defn,
pointer to next

alpha. entry (NX$)

1 LEFT-JUSTIFY ... 3
2 BYTE ... 4
3 RIGHT-JUSTIFY ... 0
4 HEXADECIMAL ... 1

When we read record 2 (BYTE), it tells us that record 4 (HEXADECIMAL) is next,
which then tell~ us record 1 (LEFT-JUSTIFY) is next, etc. The last entry, record 3
(RIGHT-JUSTIFY), points us to zero, which we take to mean "The End."

Since NX$ will contain an integer, we have to first convert that number to a two
byte string representation, using MK!$ (line 230 above).

The following program displays the glossary in alphabetical sequence:

312)12) REM Ill GLOSSOUT/BAS Ill

3112) CLS : CLEAR 312)12)
3212) OPEN "R" t 1 t "GLOSSARY /BAS"
3312) FIELD 11 15 AS WD$1 238 AS MEANING$1 2 AS NX$
3ll1Zl INPUT "WHICH RECORD IS FIRST ALPHABETICALLY"; N'i:',
3512) GET 1 t No/.,
3512) PRINT : PRINT WO$
3712) PRINT MEANING$
3812) N% = CVI(NX$1
380 INPUT "PRESS <ENTER> TO CONTINUE"; >'.
ll1Zl0 IF N%
ll11Zl CLOSE
ll212) END

180

12) THEN 3512)

·---·· ··• ······-···--·-·--·····•-·•··•···--··------------------ ·-·----·····--····

DOUBLE-DENSITY

Appendix A/Disk BASIC Error
Codes/Messages
51 Field overflow
52 Internal error
53 Bad file number
54 File not found I
55 Bad file mode
58 Disk vo error
62 Disk full
63 Input past end
64 Bad record number
65 Bad file name
67 Direct statement in file
68 Too many files
69 Disk write-protect
70 File access

Note: Disk errors cannot be simulated via the FRROR statement.

181

182

DOUBLE-DENSITY

Appendix B/Model I BASIC Reserved
Words

@ ELSE LUST RENAME
ABS END LPRINT RESET
AND EOF LOAD RESTORE
ASC ERL LOC RESUME
ATN ERR LOF RETURN
AUTO ERROR LOG RIGHT$
CDBL EXP MEM RND
CHR$ FIELD MERGE RSET
CINT FIX MID$ RUN
CLEAR FN MKD$ SAVE
CLOCK FOR MK!$ SET
CLOSE FORMAT MKS$ SGN
CLS FRE NAME SIN
CMD FREE NEW SQR
CONT GET NEXT STEP
cos GOSUB NOT STOP
CSNG GOTO ON STRING$
CVD IF OPEN STR$
CVI INKEY$ OR SYSTEM
CVS !NP OUT TAB
DATA INPUT PEEK TAN
DEFDBL INSTR POINT THEN
DEFFN INT POKE TIME$
DEFINT KILL POS TO
DEFSNG LEFT$ POSN TROFF
DEFUSR LET PRINT TRON
DEFSTR LSET PUT USING
DELETE LEN RANDOM USR
DIM LINE READ VAL
EDIT LIST REM VARPTR

VERIFY

None of these words can be used inside a variable name. You'll get a syntax
error if you try to use these words as variables.

183

184

Index

Subject Page

Abbreviations . 9
APPEND............... 19
ATTRIB................... 20
AUTO 23
BACKUP 2, 25
BASIC 13
BASIC* 112
BASIC Reserved Words 183
BLINK 27
BUILD 27
C (Call Single-Step) 41
CLEAR 28
CLOCK 29
CLOSE 141, 149
C~ ~
CMD"'A" 115, 117
CMD''B'" 115,117
CMD"C" 115, 118
CMD"D" 115, 119
CMD'F 115,120

.................. 115,121
. 115,121

··············115,123
...... 115, 123

.................. 115, 124
................... 115, 125
.................. 115, 126

CMD·T ..
CMD"J
CMD"K"
CMD"'L''
CMD"O"
CMD"P"
CMD"R'"
CMD"s··
CMD"T"
CMD"X"
CMD"Z"

. 115, 126

Commands
Auto
Entering
Syntax .

CONFIG
COPY

························115,127
. 115, 128

.......... . .. 115,128

............ 23
................ 17

CREATE

. .. 17
. 30

... 33
34

........... 1 41 , 1 63
. 1 4 1 , 1 63

....... 141 , 1 63

CVD
CVI
CVS ..

DOUBLE-DENSITY

Subject Page

D (Display Memory Contents) ... 38
Data Diskette See Diskette
Data Files 17

36 DATE ..
DEBUG
DEF FN ..
DEFUSR
DIR
Disk BASIC

Abbreviations
Cassette Baud Rate

. 37
. 115, 129

.. 115,131
. 42

. 115, 116
" 6

Error Codes/Messages 181
Instructions . 5
Starting .. 5, 111

Disk Drives 13
Diskette

Data
Specifications
System

DO

3
11
2

.. 27, 28, 44
DUAL 46
DUMP . 46
EOF
ERASE
ERROR
FIELD ..
File Access

Random ..
Sequential ...

FILFIX
FORMAT
FREE
GET
Granules
HELP
I (Instruction Single-Step)
INPUT#
INSTR ..
I OCalls
l·O Devices
J (Jump)

. ... 141, 165
.. 47

... 48
. . 141, 158 ·

169,175,179
... , 169,171

. 48
.......... 3. 49

.... 34, 51
. 141, 160

.. 35, 77-79
... 52
... 41

. 141. 150

. 115, 131
82-95

13
41

185

TRS-80 MODEL I DISK SYSTEM

Subject
KILL
LIB .. .
LINE INPUT ..
LINE INPUT#
LIST

Page
. . 48, 53, 141 , 1 43

.... 54
... 115. 133

..... 141. 154
. 54

~~ 5
LOAD 55, 141, 143
LOC.. 141, 166
LOF. 141, 166
LPC 56
LSET 141,162
M (Modify RAM) 38
Maintenance 7
MASTER................. . .. 57
MEMTEST . 58
MERGE 19,141,144
MID$= 115,134
MKD$, MKI$, MKS$ 141, 167
NAME 115,135
Non-Suffixed Drives 31
Notations
OPEN
Password

···················· 9
... 141. 148

Access 21
Changing 21. 61
Master 3, 61
Protecting 21
Update 21

PATCH 58
PAUSE 60
PRINT# 141, 155
Program Files . 17
PROT 61
PURGE...... 62
PUT 141, 161
Q (Quit) 42
R (Change Register Contents) 39
RAM...................... .13,14,77
RELO 64

186

Subject Page
RENAME 65

Repeat Key .. .
RSET
ROM
ROM Subroutines
RUN ·program" .
S (Full-Screen Display)
Save

.. 18
141,161

77
..... 99

...... 141, 145
.......... 38

... 5
SAVE.............. 141,146
SETCOM 66
Specifications .. .
SPOOL
Starting

............ 11
. .. 67

Sy~em 1
TRSDOS 2

Suffixed Drives 31
System Diskette See Diskette
System Files 17
TAPE................ 69
TIME ... 70
TIME$ 115, 136
TRACE 71
Troubleshooting 7
TRSDOS

Definition 13
Starting 2
Using 17

TRSDOS Error Codes.1Messages 96
ULC 71
UNKILL 48, 72
USER 73
USERn 115, 137
USING Option 115. 158
VERIFY 75
WP .. 75
X (Half-Screen Display) 38
&H and &O 115
- (Decrement Display Address) 41
; (Increment Display Address) 41

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN "AS
IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused or
alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interruption
of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or computer
programs.

NOTE: Good data processing procedure dictates that the user test the
program, run and test sample sets of data, and run the system in parallel
with the system previously in use for a period of time adequate to insure
that results of operation of the computer or program are satisfactory

This Warranty gives the original purchaser specific legal rights, and the
original purchaser may have other rights which vary from state to state.

RADIO SHACK SOFTWARE LICENSE
A Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not title
to the software.

B. In consideration for this license, CUSTOMER, shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the software allows a
backup copy to be made,) and shall include Radio Shack's copyright notice
on all copies of software reproduced in whole or in part

C CUSTOMER may resell Radio Shack's system and appl1cat1ons
software (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold The prov1s1ons of
this software License (paragraphs A, B, and C) shall also be applicable to
third parties purchasing such software from CUSTOMER

LIMITED WARRANTY
For a period of 90 days from the date of delivery Radio Shack warrants to the
or1g1nal purchaser that the computer hardware unit shall be free from manu
facturing defects. This warranty is only applicable to the original purchaser
who purchased the unit from Radio Shack company-owned retail outlets or
duly authorized Radio Shack franchisees and dealers This warranty is voided
if the unit is sold or transferred by purchaser to a third party. This warranty shall
be void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified If a defect occurs
during the warranty period, the unit must be returned to a Radio Shack store,
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack's election and sole expense Radio Shack shall have no
obligation to replace or repair expendable items

Any statements made by Radio Shack and its employees, including but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose. nor give rise to any liability or obligation of Radio Shack

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO OTHER
WARRANTIES. EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO.
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE IN NO EVENT SHALL RADIO SHACK BE LIABLE
FOR LOSS OF PROFITS OR BENEFITS. INDIRECT. SPECIAL. CONSEQUEN
TIAL OR OTHER SIMILAR DAMAGES ARISING OUT OF ANY BREACH OF
THIS WARRANTY OR OTHERWISE

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

TANDY CORPORATION
BELGIUM U K.

280 316 VICTORIA ROAD
RYDALMERE. N.S.W. 2116

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 ?JN

8749342

PRINTED IN U.S.A.

-

Important Information for Cassette
Users
Note: Model lil BASIC on the TRS-80 Model III is essentially the same as Level
II BASIC on the TRS-80 Model I. All of the following references to Level II
BASIC also refer to Model III BASIC. The only difference is that a higher baud
rate for saving onto tape can be set if you have a Model III with Model III BASIC
(high = 1500 and low = 500). Both low and high baud rate use the same vol
ume setting on the Model Ill.

Using Your Cassette Deck
Many factors affect the performance of a cassette system. The most significant
one is volume. Too low a volume may cause some of the information to be
missed. Tbo high a volume may cause distortion and result in the transfer of
background noise as valid information.

Four different cassette models have been supplied with the TRS-80 system -
the CTR-40, CTR-41, CTR-80, and CTR-80A. Each model has its own loading
characteristics. The table below gives the suggested volume ranges for each of
the CTR models.

Notice that the volume ranges for Level I and Level II are different. This is
because the Level II data transfer rate is faster (500 baud vs. 250 baud). Also,
notice that for the TRS-80 Model I, pre-recorded Radio Shack programs need a
slightly higher volume setting than that required by your own CSAVEd tapes.
This is because the pre-recorded tapes are produced with high-speed audio
equipment at a slightly lower volume level than the CSAVE process provides.
The Model Ill records at a lower volume than the pre-recorded tapes are
recorded at, so the volume setting for user-generated tapes is higher than for
pre-programmed tapes. You will need to take this into account when CLOADing
Level II programs into a Model III.

Recorder User-Generated Tapes Pre-Recorded
Model Radio Shark Tapes

LEVELi LEVEL II LEVELi LEVEL II
CTR-40 YELLOW LINE RED LINE YELLOW LINE RED LINE
CTR-41 6-8 4-6 6.5-8.5 5-7
CTR-80 & 4.5-6.5 3-5 5.5-7.5 2.5-5 CRT-80A

Recommended Volume Settings for Radio Shack Cassette Decks
When Used with the TRS-80 Model I

Recorder Model User-Generated Pre-Recorded
Tapes Radio Shack Tapes

CTR-80, CTR-BOA 5-7 4-6

Recommended Volume Settings for Radio Shack Cassette Decks
When Used with TRS-80 Model Ill

(With the CTR-40, CTR-80, and CTR-80A, turn the control to the left to
increase volume. With the CTR-41, turn the control to the right.)

When information is being loaded from the cassette tape, two asterisks will
appear on the screen. The one on the right will flash on or off as the program is
read in. If the asterisks do not appear, or the one on the right does not flash,
then the volume setting is probably too low. Increase the volume and try again.
If you have a Model III this may be an indication that the tape's baud rate is dif
ferent than the Computer's baud rate. (All Radio Shack Model I Level II pre
recorded cassettes are recorded at 500 baud rate, so Low baud rate must be
selected when they are loaded on the Model III.) Try resetting the baud rate
from high to low or vice versa (See your Operation Manual).

Use the reset button to stop the cassette and return control to you if loading
problems occur.

Radio Shack programs are recorded at least twice on each tape. Following this
practice when you record programs on tape will give you a back-up if one does
not load properly or if it becomes damaged.

Important Note: The CTR-41 requires that you keep the supplied "dummy
plug·' in the MIC jack at all times. However, the other models should never be
used with the "dummy plug."

Level I

Sometimes you will get an error message during an attempted CLOAD. This
means that some information was lost or garbled. Adjust the volume level
slightly and try again.

Level II (Also Model III BASIC)

In case of an error message, proceed as above. In Level II, there is also a rare
case in which the program is not loaded correctly even though no error message
is generated. So, after CLOADing a program, be sure to LIST it. If some data was
garbled, then at some point in the listing the display will be filled with meaning
less words and characters. Adjust the volume and try again.

Hints and Tips
Computer tapes should be stored in a relatively dust-free area (a cassette case is
recommended) and protected from high temperatures. Magnetic and electrical
fields may alter recorded information, so avoid placing the tape near them

(i.e. household appliances, power sources such as transformers and television
sets, etc.).

The cassette deck supplied with the TRS-80 is very compatible with the system
and will perform its duties with great success. To keep the cassette deck in top
condition and thus minimize your problems, you should periodically perform
•some routine maintenance on it. Dirty heads can cause as much as a 50% loss of
volume. Also, heads become magnetized with use and may cause distortion. We
recommend that you clean the head, capstan, and pinch roller after every four
hours of operation. Heads on new recorders should always be cleaned before
use.

Note: Cassette cleaning and demagnetizing accessories are available from your
local Radio Shack store.

r

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN "AS
IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged
to be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the
use or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the pro

gram, run and test sample sets of data, and run the system in parallel
with the system previously in use for a period of time adequate to
insure that results of operation of the computer or program are
satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to use
on CUSTOMER'S computer the Radio Shack computer software received.
Title to the media on which the software is recorded (cassette and/or disk) or
stored (ROM) is transferred to the CUSTOMER, but not title to the software.

8. In consideration for this license, CUSTOMER shall not reproduce copies of
Radio Shack software except to reproduce the number of copies required for
use on CUSTOMER'S computer (if the software allows a backup copy to be
made), and shall include Radio Shack's copyright notice on all copies of
software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications software
(modified or not, in whole or in part), provided CUSTOMER has purchased one
copy of the software for each one resold. The provisions of this software
License (paragraphs A, B, and C) shll also be applicable to third parties
purchasing such software from CUSTOMER.

RADIO SHACK A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

8759015 - 381

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U.K.

HILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

